aboutsummaryrefslogtreecommitdiff
path: root/README.md
blob: 900fa28124263141d18b7ac33f1d6904dee45c6c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
# vartan

vartan is an LALR(1) parser generator for golang. vartan also provides a command to perform syntax analysis to allow easy debugging of your grammar.

[![Test](https://github.com/nihei9/vartan/actions/workflows/test.yml/badge.svg?branch=main)](https://github.com/nihei9/vartan/actions/workflows/test.yml)

## Installation

Compiler:

```sh
$ go install github.com/nihei9/vartan/cmd/vartan@latest
```

Code Generator:

```sh
$ go install github.com/nihei9/vartan/cmd/vartan-go@latest
```

## Usage

### 1. Define your grammar

vartan uses BNF-like DSL to define your grammar. As an example, let's write a grammar that represents a simple expression.

```
#name expr;

#prec (
	#left mul div
	#left add sub
);

expr
	: expr add expr
	| expr sub expr
	| expr mul expr
	| expr div expr
	| func_call
	| int
	| id
	| '(' expr ')' #ast expr
	;
func_call
	: id '(' args ')' #ast id args
	| id '(' ')'      #ast id
	;
args
	: args ',' expr #ast args... expr
	| expr
	;

ws #skip
	: "[\u{0009}\u{0020}]+";
int
	: "0|[1-9][0-9]*";
id
	: "[A-Za-z_][0-9A-Za-z_]*";
add
	: '+';
sub
	: '-';
mul
	: '*';
div
	: '/';
```

Save the above grammar to a file in UTF-8. In this explanation, the file name is `expr.vartan`.

⚠️ The input file must be encoded in UTF-8.

### 2. Compile the grammar

Next, generate a parsing table using `vartan compile` command.

```sh
$ vartan compile expr.vartan -o expr.json
```

### 3. Debug

#### 3.1. Parse

If you want to make sure that the grammar behaves as expected, you can use `vartan parse` command to try parse without implementing a driver.

⚠️ An encoding that `vartan parse` command and the driver can handle is only UTF-8.

```sh
$ echo -n 'foo(10, bar(a)) + 99 * x' | vartan parse expr.json
expr
├─ expr
│  └─ func_call
│     ├─ id "foo"     └─ args
│        ├─ expr
│          └─ int "10"        └─ expr
│           └─ func_call
│              ├─ id "bar"              └─ args
│                 └─ expr
│                    └─ id "a"
├─ add "+"
└─ expr
   ├─ expr
     └─ int "99"
   ├─ mul "*"
   └─ expr
      └─ id "x"
```

When `vartan parse` command successfully parses the input data, it prints a CST or an AST (if any).

#### 3.2. Resolve conflicts

`vartan compile` command also generates a report named `*-report.json`. This file describes each state in the parsing table in detail. If your grammar contains conflicts, see `Conflicts` and `States` sections of this file. Using `vartan show` command, you can see the report in a readable format.

```sh
$ vartan show expr-report.json
```

### 4. Generate a parser

Using `vartan-go` command, you can generate a source code of a parser to recognize your grammar.

```sh
$ vartan-go expr.json
```

Then you will get the following files.

* `expr_parser.go`
* `expr_lexer.go`
* `expr_semantic_action.go`

You need to implement a driver to use the parser. An example is below.

```go
package main

import (
	"fmt"
	"io"
	"os"
)

func main() {
	toks, err := NewTokenStream(os.Stdin)
	if err != nil {
		fmt.Println(err)
		os.Exit(1)
	}
	gram := NewGrammar()
	tb := NewDefaultSyntaxTreeBuilder()
	p, err := NewParser(toks, gram, SemanticAction(NewASTActionSet(gram, tb)))
	if err != nil {
		fmt.Println(err)
		os.Exit(1)
	}
	err = p.Parse()
	if err != nil {
		fmt.Println(err)
		os.Exit(1)
	}
	synErrs := p.SyntaxErrors()
	if len(synErrs) > 0 {
		for _, synErr := range synErrs {
			printSyntaxError(os.Stderr, synErr, gram)
		}
		os.Exit(1)
	}
	fmt.Println("accepted")
	PrintTree(os.Stdout, tb.Tree())
}

func printSyntaxError(w io.Writer, synErr *SyntaxError, gram Grammar) {
	var msg string
	tok := synErr.Token
	switch {
	case tok.EOF():
		msg = "<eof>"
	case tok.Invalid():
		msg = fmt.Sprintf("'%v' (<invalid>)", string(tok.Lexeme()))
	default:
		if alias := gram.TerminalAlias(tok.TerminalID()); alias != "" {
			msg = fmt.Sprintf("'%v' (%v)", string(tok.Lexeme()), alias)
		} else {
			msg = fmt.Sprintf("'%v' (%v)", string(tok.Lexeme()), gram.Terminal(tok.TerminalID()))
		}
	}
	fmt.Fprintf(w, "%v:%v: %v: %v", synErr.Row+1, synErr.Col+1, synErr.Message, msg)

	if len(synErr.ExpectedTerminals) > 0 {
		fmt.Fprintf(w, "; expected: %v", synErr.ExpectedTerminals[0])
		for _, t := range synErr.ExpectedTerminals[1:] {
			fmt.Fprintf(w, ", %v", t)
		}
	}

	fmt.Fprintf(w, "\n")
}
```

Please save the above source code to `main.go` and create a directory structure like the following.

```
/project_root
├── expr_parser.go
├── expr_lexer.go
├── expr_semantic_action.go
└── main.go (the driver you implemented)
```

Now, you can perform the syntax analysis.

```sh
$ echo -n 'foo+99' | go run .
accepted
expr
├─ expr
│  └─ id "foo"
├─ add "+"
└─ expr
   └─ int "99"
```

```sh
$ echo -n 'foo+99?' | go run .
1:7: unexpected token: '?' (<invalid>); expected: <eof>, +, -, *, /
exit status 1
```

## Vartan syntax

### Grammar name

A grammar name `#name <Identifier>` is an identifier that represents a grammar name. For now, this identifier is used as a file name generated like _<grammar-name>\_parser.go_.

### Production rules

A production rule consists of a non-terminal symbol and sequences of symbols the non-terminal symbol derives. The first production rule will be the start production rule.

Production rule:

```
<non-terminal-symbol>
	: <alternative-1>
	| <alternative-2>
	| ...
	| <alternative-N>
	;
```

or

```
<terminal-symbol>
	: <pattern-or-string-literal>
	;
```

Alternative:

```
<element-1> <element-2> ... <element-N>
```

An element an alternative contains is a terminal symbol, a non-terminal symbol, a pattern, or a string literal.

You can define terminal symbols in the same grammar as non-terminal symbols.

If a production rule satisfies all of the following conditions, it is considered to define a terminal symbol.

* A production rule has only one alternative.
* the alternative has only one pattern or string literal.

Fragment:

```
fragment <terminal-symbol>
	: <pattern-or-string>
	;
```

Using the `fragment` keyword, you can also define a fragment that represents a part of a pattern. You can use a fragment by embedding it into a pattern like `"\f{some_fragment}"`.

### Types

#### Identifier

An identifier is a string that satisfies all of the following rules:

* Contains only the lower-case letters (`a`-`z`), the digits (`0`-`9`), and the underscore (`_`).
* The first letter is only the lower-case letters.
* The last letter is only the lower-case letters or the digits.

examples:

`expression`, `if_statement`, `parameter1`

#### Pattern

A pattern is a string enclosed with `"` and represents a regular expression. A pattern that appears in production rules is used in lexical analysis. For more information on the syntax of regular expressions, please see [maleeni's documents](https://github.com/nihei9/maleeni/blob/main/README.md). vartan uses [maleeni](https://github.com/nihei9/maleeni) as a lexer.

examples:

`"if"`, `"\+"`, `"[A-Za-z_][0-9A-Za-z_]*"`, `[\u{0009}\u{0020}]+`

#### String literal

A string literal is a string enclosed with `'`. A string literal is interpreted literally, not as a regular expression.

examples:

`'if'`, `'+'`, `'=='`

### Directives for non-terminal symbols

#### `#ast {<symbol-or-label: Identifier>}`

A `#ast` directive allows you to define a structure of an AST (Abstract Syntax Tree).

example 1:

Consider a grammar that accepts comma-separated list of integers. You can avoid including brackets and commas in an AST by specifying only the necessary symbols int the `#ast` directive parameters. Also, you can flatten an AST using `...` operator. `...` operator expands child nodes of a specified symbol.

```
#name example;

list
	: '[' elems ']' #ast elems...
	;
elems
	: elems ',' int #ast elems... int
	| int
	;

ws #skip
   : "[\u{0009}\u{0020}]+";
int
	: "0|[1-9][0-9]*";
```

The above grammar generates an AST as follows:

```
$ echo -n '[1, 2, 3]' | vartan parse example.json
list
├─ int "1"
├─ int "2"
└─ int "3"
```

example 2:

Consider a grammar that accepts ternary-if expression (`<condition> ? <value if true> : <value if false>`). As this grammar contains two `int` symbols, you need to add labels to each symbol to distinguish them. A label consists of `@` + an identifier.

```
#name example;

if_expr
	: id '?' int@true ':' int@false #ast id true false
	;

ws #skip
	: "[\u{0009}\u{0020}]+";
id
	: "[a-z_][0-9a-z_]*";
int
	: "0|[1-9][0-9]*";
```

The above grammar generates an AST as follows:

```
$ echo -n 'x? 0 : 99' | vartan parse example.json
if_expr
├─ id "x"
├─ int "0"
└─ int "99"
```

Labels are intended to identify elements in directives. An AST doesn't contain labels.

#### `#prec <symbol: Identifier>`

A `#prec` directive gives alternatives the same precedence as `symbol`.

See [Operator precedence and associativity](#operator-precedence-and-associativity) section for more details on the `#prec` directive.

#### `#recover`

A parser transitions to an error state when an unexpected token appears. By default, the parser recovers from the error state when it shifts three tokens after going to the error state.

When the parser reduces a non-terminal symbol having a `#recover` directive, the parser recovers from the error state.

See [Error recovery](#error-recovery) section for more details on the `#recover` directive.

### Directives for terminal symbols

#### `#alias <alias: String>`

An `#alias` directive aliases for a terminal symbol. You can use the alias in error messages, for example.

example:

```
#name example;

s
	: id
	;

id #alias 'identifier'
	: "[A-Za-z_][0-9A-Za-z_]*";
```

#### `#mode {<mode-name: Identifier>}`, `#push <mode-name: Identifier>`, and `#pop`

A terminal symbol with a `#mode` directive is recognized only on a specified mode (`mode-name`). The mode is lexer state, which a `#push` directive and a `#pop` directive can switch.

When the parser shifts a terminal symbol having the `#push` directive, the current mode of the lexer will change to the specified mode (`mode-name`). Using the `#pop` directive, you can make the lexer revert to the previous mode.

example:

```
#name example;

tag_pairs
	: tag_pairs tag_pair
	| tag_pair
	;
tag_pair
	: open_tag tag_pairs close_tag
	| open_tag text close_tag
	;
open_tag
	: tag_open name tag_close
	;
close_tag
	: tag_open closing_mark name tag_close
	;

ws #skip
	: "[\u{0009}\u{000A}\u{000D}\u{0020}]+";
text
	: "([^<]|\\<)+";
tag_open #push tag
	: '<';
tag_close #mode tag #pop
	: '>';
closing_mark #mode tag
	: '/';
name #mode tag
	: "[a-z_-][0-9a-z_-]*";
```

The above grammar accepts XML-like texts such as the following:

```
<assistant-director>
	<name>Walter Skinner</name>
	<born>June 3, 1952</born>
</assistant-director>
```

#### `#skip`

The parser doesn't shift a terminal symbol having a `#skip` directive. In other words, these terminal symbols are recognized in lexical analysis but not used in syntax analysis. The `#skip` directive helps define delimiters like white spaces.

example:

```
#name example;

s
	: foo bar
	;

ws #skip
	: "[\u{0009}\u{0020}]+";
foo
	: 'foo';
bar
	: 'bar';
```

The above grammar accepts the following input:

```
foo    bar
```

```
foobar
```

### Operator precedence and associativity

`#left` and `#right` directives allow you to define precedence and associativiry of symbols. `#left`/`#right` each assign the left/right associativity to symbols.

If you want to change precedence, `#assign` directive helps you. `#assign` directive changes only precedence, not associativity.

When the right-most terminal symbol of an alternative has precedence or associativity defined explicitly, the alternative inherits its precedence and associativity.

`#prec` directive assigns the same precedence as a specified symbol to an alternative and disables associativity.

You can define an ordered symbol with the form `$<ID>`. The ordered symbol is an identifier having only precedence, and you can use it in `#prec` directive applied to an alternative. The ordered symbol helps you to resolve shift/reduce conflicts without terminal symbol definitions.

The grammar for simple four arithmetic operations and assignment expression can be defined as follows:

```
#name example;

#prec (
	#assign $uminus
	#left mul div
	#left add sub
	#right assign
);

expr
	: expr add expr
	| expr sub expr
	| expr mul expr
	| expr div expr
	| id assign expr
	| int
	| sub int #prec $uminus // This `sub` means a unary minus symbol.
	| id
	;

ws #skip
	: "[\u{0009}\u{0020}]+";
int
	: "0|[1-9][0-9]*";
id
	: "[a-z_][0-9a-z_]*";
add
	: '+';
sub
	: '-';
mul
	: '*';
div
	: '/';
assign
	: '=';
```

`#left` and `#right` can appear multiple times, and the first symbols applied to will have the highest precedence. That is, `mul` and `div` have the highest precedence, and `assign` has the lowest precedence.

⚠️ In many Yacc-like tools, the last symbols defined have the highest precedence. Not that in vartan, it is the opposite.

When you compile the above grammar, some conflicts occur. However, vartan can resolve the conflicts following `#left`, `#right`, and `#prec`.

```
$ echo -n 'foo = bar = x * -1 / -2' | vartan parse example.json
expr
├─ id "foo"
├─ assign "="
└─ expr
   ├─ id "bar"
   ├─ assign "="
   └─ expr
      ├─ expr
      │  ├─ expr
      │  │  └─ id "x"
      │  ├─ mul "*"
      │  └─ expr
      │     ├─ sub "-"
      │     └─ int "1"
      ├─ div "/"
      └─ expr
         ├─ sub "-"
         └─ int "2"
```

Incidentally, using no directives, you can define the above example as the following grammar:

```
#name example;

expr
	: id assign expr
	| arithmetic
	;

arithmetic
	: arithmetic add term
	| arithmetic sub term
	| term
	;
term
	: term mul factor
	| term div factor
	| factor
	;
factor
	: int
	| sub int
	| id
	;

ws #skip
	: "[\u{0009}\u{0020}]+";
int
	: "0|[1-9][0-9]*";
id
	: "[a-z_][0-9a-z_]*";
add
	: '+';
sub
	: '-';
mul
	: '*';
div
	: '/';
assign
	: '=';
```

This grammar expresses precedence and associativity by nesting production rules instead of directives. Also, no conflicts occur in compiling this grammar.

However, the more production rules you define, the more time syntax analysis needs. A structure of a mechanically generated parse tree is also more complex, but you can improve the structure of the parse tree using `#ast` directive.

```
$ echo -n 'foo = bar = x * -1 / -2' | vartan parse example.json
expr
├─ id "foo"
├─ assign "="
└─ expr
   ├─ id "bar"
   ├─ assign "="
   └─ expr
      └─ arithmetic
         └─ term
            ├─ term
            │  ├─ term
            │  │  └─ factor
            │  │     └─ id "x"
            │  ├─ mul "*"
            │  └─ factor
            │     ├─ sub "-"
            │     └─ int "1"
            ├─ div "/"
            └─ factor
               ├─ sub "-"
               └─ int "2"
```

### Error recovery

By default, a parser will stop syntax analysis on a syntax error. If you want to continue semantic actions after syntax errors occur, you can use an `error` symbol and a `#recover` directive.

When a syntax error occurs, the parser pops states from a state stack. If a state containing the `error` symbol appears, a parser stops popping the states. It then shifts the `error` symbol and resumes syntax analysis.

Consider grammar of simple assignment statements.

```
#name example;

statements
	: statements statement #ast statements... statement
	| statement            #ast statement
	;
statement
	: name '=' int ';' #ast name int
	| error ';'        #recover
	;

ws #skip
	: "[\u{0009}\u{0020}]";
name
	: "[a-z_][0-9a-z_]*";
int
	: "0|[1-9][0-9]*";
```

The alternative `error ';'` traps a syntax error and discards symbols until the parser shifts `';'`. When the parser shifts `';'` and reduces `statement`, the parser will recover from an error state immediately by the `#recover` directive.

In the following example, you can see the parser print syntax error messages and an AST. This result means the parser had continued syntax analysis and semantic actions even if syntax errors occurred.

```
$ echo -n 'x; x =; x = 1;' | vartan parse example.json
1:2: unexpected token: ';' (x_2); expected: =
1:7: unexpected token: ';' (x_2); expected: int

statements
├─ statement
│  ├─ !error
│  └─ x_2 ";"
├─ statement
│  ├─ !error
│  └─ x_2 ";"
└─ statement
   ├─ name "x"
   └─ int "1"
```