aboutsummaryrefslogtreecommitdiff
path: root/immutable.go
blob: ac430ea4e8fc347c20583193ffbdcd73d9d176cf (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
// Package immutable provides immutable collection types.
//
// Introduction
//
// Immutable collections provide an efficient, safe way to share collections
// of data while minimizing locks. The collections in this package provide
// List, Map, and SortedMap implementations. These act similarly to slices
// and maps, respectively, except that altering a collection returns a new
// copy of the collection with that change.
//
// Because collections are unable to change, they are safe for multiple
// goroutines to read from at the same time without a mutex. However, these
// types of collections come with increased CPU & memory usage as compared
// with Go's built-in collection types so please evaluate for your specific
// use.
//
// Collection Types
//
// The List type provides an API similar to Go slices. They allow appending,
// prepending, and updating of elements. Elements can also be fetched by index
// or iterated over using a ListIterator.
//
// The Map & SortedMap types provide an API similar to Go maps. They allow
// values to be assigned to unique keys and allow for the deletion of keys.
// Values can be fetched by key and key/value pairs can be iterated over using
// the appropriate iterator type. Both map types provide the same API. The
// SortedMap, however, provides iteration over sorted keys while the Map
// provides iteration over unsorted keys. Maps improved performance and memory
// usage as compared to SortedMaps.
//
// Hashing and Sorting
//
// Map types require the use of a Hasher implementation to calculate hashes for
// their keys and check for key equality. SortedMaps require the use of a
// Comparer implementation to sort keys in the map.
//
// These collection types automatically provide built-in hasher and comparers
// for int, string, and byte slice keys. If you are using one of these key types
// then simply pass a nil into the constructor. Otherwise you will need to
// implement a custom Hasher or Comparer type. Please see the provided
// implementations for reference.
package immutable

import (
	"bytes"
	"fmt"
	"math/bits"
	"sort"
	"strings"
)

// List is a dense, ordered, indexed collections. They are analogous to slices
// in Go. They can be updated by appending to the end of the list, prepending
// values to the beginning of the list, or updating existing indexes in the
// list.
type List struct {
	root   listNode // root node
	origin int      // offset to zero index element
	size   int      // total number of elements in use
}

// NewList returns a new empty instance of List.
func NewList() *List {
	return &List{
		root: &listLeafNode{},
	}
}

// clone returns a copy of the list.
func (l *List) clone() *List {
	other := *l
	return &other
}

// Len returns the number of elements in the list.
func (l *List) Len() int {
	return l.size
}

// cap returns the total number of possible elements for the current depth.
func (l *List) cap() int {
	return 1 << (l.root.depth() * listNodeBits)
}

// Get returns the value at the given index. Similar to slices, this method will
// panic if index is below zero or is greater than or equal to the list size.
func (l *List) Get(index int) interface{} {
	if index < 0 || index >= l.size {
		panic(fmt.Sprintf("immutable.List.Get: index %d out of bounds", index))
	}
	return l.root.get(l.origin + index)
}

// Set returns a new list with value set at index. Similar to slices, this
// method will panic if index is below zero or if the index is greater than
// or equal to the list size.
func (l *List) Set(index int, value interface{}) *List {
	return l.set(index, value, false)
}

func (l *List) set(index int, value interface{}, mutable bool) *List {
	if index < 0 || index >= l.size {
		panic(fmt.Sprintf("immutable.List.Set: index %d out of bounds", index))
	}
	other := l
	if !mutable {
		other = l.clone()
	}
	other.root = other.root.set(l.origin+index, value, mutable)
	return other
}

// Append returns a new list with value added to the end of the list.
func (l *List) Append(value interface{}) *List {
	return l.append(value, false)
}

func (l *List) append(value interface{}, mutable bool) *List {
	other := l
	if !mutable {
		other = l.clone()
	}

	// Expand list to the right if no slots remain.
	if other.size+other.origin >= l.cap() {
		newRoot := &listBranchNode{d: other.root.depth() + 1}
		newRoot.children[0] = other.root
		other.root = newRoot
	}

	// Increase size and set the last element to the new value.
	other.size++
	other.root = other.root.set(other.origin+other.size-1, value, mutable)
	return other
}

// Prepend returns a new list with value added to the beginning of the list.
func (l *List) Prepend(value interface{}) *List {
	return l.prepend(value, false)
}

func (l *List) prepend(value interface{}, mutable bool) *List {
	other := l
	if !mutable {
		other = l.clone()
	}

	// Expand list to the left if no slots remain.
	if other.origin == 0 {
		newRoot := &listBranchNode{d: other.root.depth() + 1}
		newRoot.children[listNodeSize-1] = other.root
		other.root = newRoot
		other.origin += (listNodeSize - 1) << (other.root.depth() * listNodeBits)
	}

	// Increase size and move origin back. Update first element to value.
	other.size++
	other.origin--
	other.root = other.root.set(other.origin, value, mutable)
	return other
}

// Slice returns a new list of elements between start index and end index.
// Similar to slices, this method will panic if start or end are below zero or
// greater than the list size. A panic will also occur if start is greater than
// end.
//
// Unlike Go slices, references to inaccessible elements will be automatically
// removed so they can be garbage collected.
func (l *List) Slice(start, end int) *List {
	return l.slice(start, end, false)
}

func (l *List) slice(start, end int, mutable bool) *List {
	// Panics similar to Go slices.
	if start < 0 || start > l.size {
		panic(fmt.Sprintf("immutable.List.Slice: start index %d out of bounds", start))
	} else if end < 0 || end > l.size {
		panic(fmt.Sprintf("immutable.List.Slice: end index %d out of bounds", end))
	} else if start > end {
		panic(fmt.Sprintf("immutable.List.Slice: invalid slice index: [%d:%d]", start, end))
	}

	// Return the same list if the start and end are the entire range.
	if start == 0 && end == l.size {
		return l
	}

	// Create copy, if immutable.
	other := l
	if !mutable {
		other = l.clone()
	}

	// Update origin/size.
	other.origin = l.origin + start
	other.size = end - start

	// Contract tree while the start & end are in the same child node.
	for other.root.depth() > 1 {
		i := (other.origin >> (other.root.depth() * listNodeBits)) & listNodeMask
		j := ((other.origin + other.size - 1) >> (other.root.depth() * listNodeBits)) & listNodeMask
		if i != j {
			break // branch contains at least two nodes, exit
		}

		// Replace the current root with the single child & update origin offset.
		other.origin -= i << (other.root.depth() * listNodeBits)
		other.root = other.root.(*listBranchNode).children[i]
	}

	// Ensure all references are removed before start & after end.
	other.root = other.root.deleteBefore(other.origin, mutable)
	other.root = other.root.deleteAfter(other.origin+other.size-1, mutable)

	return other
}

// Iterator returns a new iterator for this list positioned at the first index.
func (l *List) Iterator() *ListIterator {
	itr := &ListIterator{list: l}
	itr.First()
	return itr
}

// ListBuilder represents an efficient builder for creating Lists.
//
// Lists returned from the builder are safe to use even after you continue to
// use the builder. However, for efficiency, you should only retrieve your list
// after you have completed building it.
type ListBuilder struct {
	list    *List // current state
	mutable bool  // if true, next mutation will operate in-place.
}

// NewListBuilder returns a new instance of ListBuilder to build on a base list.
func NewListBuilder(list *List) *ListBuilder {
	return &ListBuilder{list: list}
}

// List returns the current copy of the list.
// The returned list is safe to use even if after the builder continues to be used.
func (b *ListBuilder) List() *List {
	list := b.list
	b.mutable = false
	return list
}

// Get returns the value at the given index. Similar to slices, this method will
// panic if index is below zero or is greater than or equal to the list size.
func (b *ListBuilder) Get(index int) interface{} {
	return b.list.Get(index)
}

// Set updates the value at the given index. Similar to slices, this method will
// panic if index is below zero or if the index is greater than or equal to the
// list size.
func (b *ListBuilder) Set(index int, value interface{}) {
	b.list = b.list.set(index, value, b.mutable)
	b.mutable = true
}

// Append adds value to the end of the list.
func (b *ListBuilder) Append(value interface{}) {
	b.list = b.list.append(value, b.mutable)
	b.mutable = true
}

// Prepend adds value to the beginning of the list.
func (b *ListBuilder) Prepend(value interface{}) {
	b.list = b.list.prepend(value, b.mutable)
	b.mutable = true
}

// Slice updates the list with a sublist of elements between start and end index.
// See List.Slice() for more details.
func (b *ListBuilder) Slice(start, end int) {
	b.list = b.list.slice(start, end, b.mutable)
	b.mutable = true
}

// Constants for bit shifts used for levels in the List trie.
const (
	listNodeBits = 5
	listNodeSize = 1 << listNodeBits
	listNodeMask = listNodeSize - 1
)

// listNode represents either a branch or leaf node in a List.
type listNode interface {
	depth() uint
	get(index int) interface{}
	set(index int, v interface{}, mutable bool) listNode

	containsBefore(index int) bool
	containsAfter(index int) bool

	deleteBefore(index int, mutable bool) listNode
	deleteAfter(index int, mutable bool) listNode
}

// newListNode returns a leaf node for depth zero, otherwise returns a branch node.
func newListNode(depth uint) listNode {
	if depth == 0 {
		return &listLeafNode{}
	}
	return &listBranchNode{d: depth}
}

// listBranchNode represents a branch of a List tree at a given depth.
type listBranchNode struct {
	d        uint // depth
	children [listNodeSize]listNode
}

// depth returns the depth of this branch node from the leaf.
func (n *listBranchNode) depth() uint { return n.d }

// get returns the child node at the segment of the index for this depth.
func (n *listBranchNode) get(index int) interface{} {
	idx := (index >> (n.d * listNodeBits)) & listNodeMask
	return n.children[idx].get(index)
}

// set recursively updates the value at index for each lower depth from the node.
func (n *listBranchNode) set(index int, v interface{}, mutable bool) listNode {
	idx := (index >> (n.d * listNodeBits)) & listNodeMask

	// Find child for the given value in the branch. Create new if it doesn't exist.
	child := n.children[idx]
	if child == nil {
		child = newListNode(n.depth() - 1)
	}

	// Return a copy of this branch with the new child.
	var other *listBranchNode
	if mutable {
		other = n
	} else {
		tmp := *n
		other = &tmp
	}
	other.children[idx] = child.set(index, v, mutable)
	return other
}

// containsBefore returns true if non-nil values exists between [0,index).
func (n *listBranchNode) containsBefore(index int) bool {
	idx := (index >> (n.d * listNodeBits)) & listNodeMask

	// Quickly check if any direct children exist before this segment of the index.
	for i := 0; i < idx; i++ {
		if n.children[i] != nil {
			return true
		}
	}

	// Recursively check for children directly at the given index at this segment.
	if n.children[idx] != nil && n.children[idx].containsBefore(index) {
		return true
	}
	return false
}

// containsAfter returns true if non-nil values exists between (index,listNodeSize).
func (n *listBranchNode) containsAfter(index int) bool {
	idx := (index >> (n.d * listNodeBits)) & listNodeMask

	// Quickly check if any direct children exist after this segment of the index.
	for i := idx + 1; i < len(n.children); i++ {
		if n.children[i] != nil {
			return true
		}
	}

	// Recursively check for children directly at the given index at this segment.
	if n.children[idx] != nil && n.children[idx].containsAfter(index) {
		return true
	}
	return false
}

// deleteBefore returns a new node with all elements before index removed.
func (n *listBranchNode) deleteBefore(index int, mutable bool) listNode {
	// Ignore if no nodes exist before the given index.
	if !n.containsBefore(index) {
		return n
	}

	// Return a copy with any nodes prior to the index removed.
	idx := (index >> (n.d * listNodeBits)) & listNodeMask

	var other *listBranchNode
	if mutable {
		other = n
		for i := 0; i < idx; i++ {
			n.children[i] = nil
		}
	} else {
		other = &listBranchNode{d: n.d}
		copy(other.children[idx:][:], n.children[idx:][:])
	}

	if other.children[idx] != nil {
		other.children[idx] = other.children[idx].deleteBefore(index, mutable)
	}
	return other
}

// deleteBefore returns a new node with all elements before index removed.
func (n *listBranchNode) deleteAfter(index int, mutable bool) listNode {
	// Ignore if no nodes exist after the given index.
	if !n.containsAfter(index) {
		return n
	}

	// Return a copy with any nodes after the index removed.
	idx := (index >> (n.d * listNodeBits)) & listNodeMask

	var other *listBranchNode
	if mutable {
		other = n
		for i := idx + 1; i < len(n.children); i++ {
			n.children[i] = nil
		}
	} else {
		other = &listBranchNode{d: n.d}
		copy(other.children[:idx+1], n.children[:idx+1])
	}

	if other.children[idx] != nil {
		other.children[idx] = other.children[idx].deleteAfter(index, mutable)
	}
	return other
}

// listLeafNode represents a leaf node in a List.
type listLeafNode struct {
	children [listNodeSize]interface{}
}

// depth always returns 0 for leaf nodes.
func (n *listLeafNode) depth() uint { return 0 }

// get returns the value at the given index.
func (n *listLeafNode) get(index int) interface{} {
	return n.children[index&listNodeMask]
}

// set returns a copy of the node with the value at the index updated to v.
func (n *listLeafNode) set(index int, v interface{}, mutable bool) listNode {
	idx := index & listNodeMask
	var other *listLeafNode
	if mutable {
		other = n
	} else {
		tmp := *n
		other = &tmp
	}
	other.children[idx] = v
	return other
}

// containsBefore returns true if non-nil values exists between [0,index).
func (n *listLeafNode) containsBefore(index int) bool {
	idx := index & listNodeMask
	for i := 0; i < idx; i++ {
		if n.children[i] != nil {
			return true
		}
	}
	return false
}

// containsAfter returns true if non-nil values exists between (index,listNodeSize).
func (n *listLeafNode) containsAfter(index int) bool {
	idx := index & listNodeMask
	for i := idx + 1; i < len(n.children); i++ {
		if n.children[i] != nil {
			return true
		}
	}
	return false
}

// deleteBefore returns a new node with all elements before index removed.
func (n *listLeafNode) deleteBefore(index int, mutable bool) listNode {
	if !n.containsBefore(index) {
		return n
	}

	idx := index & listNodeMask
	var other *listLeafNode
	if mutable {
		other = n
		for i := 0; i < idx; i++ {
			other.children[i] = nil
		}
	} else {
		other = &listLeafNode{}
		copy(other.children[idx:][:], n.children[idx:][:])
	}
	return other
}

// deleteBefore returns a new node with all elements before index removed.
func (n *listLeafNode) deleteAfter(index int, mutable bool) listNode {
	if !n.containsAfter(index) {
		return n
	}

	idx := index & listNodeMask
	var other *listLeafNode
	if mutable {
		other = n
		for i := idx + 1; i < len(n.children); i++ {
			other.children[i] = nil
		}
	} else {
		other = &listLeafNode{}
		copy(other.children[:idx+1][:], n.children[:idx+1][:])
	}
	return other
}

// ListIterator represents an ordered iterator over a list.
type ListIterator struct {
	list  *List // source list
	index int   // current index position

	stack [32]listIteratorElem // search stack
	depth int                  // stack depth
}

// Done returns true if no more elements remain in the iterator.
func (itr *ListIterator) Done() bool {
	return itr.index < 0 || itr.index >= itr.list.Len()
}

// First positions the iterator on the first index.
// If source list is empty then no change is made.
func (itr *ListIterator) First() {
	if itr.list.Len() != 0 {
		itr.Seek(0)
	}
}

// Last positions the iterator on the last index.
// If source list is empty then no change is made.
func (itr *ListIterator) Last() {
	if n := itr.list.Len(); n != 0 {
		itr.Seek(n - 1)
	}
}

// Seek moves the iterator position to the given index in the list.
// Similar to Go slices, this method will panic if index is below zero or if
// the index is greater than or equal to the list size.
func (itr *ListIterator) Seek(index int) {
	// Panic similar to Go slices.
	if index < 0 || index >= itr.list.Len() {
		panic(fmt.Sprintf("immutable.ListIterator.Seek: index %d out of bounds", index))
	}
	itr.index = index

	// Reset to the bottom of the stack at seek to the correct position.
	itr.stack[0] = listIteratorElem{node: itr.list.root}
	itr.depth = 0
	itr.seek(index)
}

// Next returns the current index and its value & moves the iterator forward.
// Returns an index of -1 if the there are no more elements to return.
func (itr *ListIterator) Next() (index int, value interface{}) {
	// Exit immediately if there are no elements remaining.
	if itr.Done() {
		return -1, nil
	}

	// Retrieve current index & value.
	elem := &itr.stack[itr.depth]
	index, value = itr.index, elem.node.(*listLeafNode).children[elem.index]

	// Increase index. If index is at the end then return immediately.
	itr.index++
	if itr.Done() {
		return index, value
	}

	// Move up stack until we find a node that has remaining position ahead.
	for ; itr.depth > 0 && itr.stack[itr.depth].index >= listNodeSize-1; itr.depth-- {
	}

	// Seek to correct position from current depth.
	itr.seek(itr.index)

	return index, value
}

// Prev returns the current index and value and moves the iterator backward.
// Returns an index of -1 if the there are no more elements to return.
func (itr *ListIterator) Prev() (index int, value interface{}) {
	// Exit immediately if there are no elements remaining.
	if itr.Done() {
		return -1, nil
	}

	// Retrieve current index & value.
	elem := &itr.stack[itr.depth]
	index, value = itr.index, elem.node.(*listLeafNode).children[elem.index]

	// Decrease index. If index is past the beginning then return immediately.
	itr.index--
	if itr.Done() {
		return index, value
	}

	// Move up stack until we find a node that has remaining position behind.
	for ; itr.depth > 0 && itr.stack[itr.depth].index == 0; itr.depth-- {
	}

	// Seek to correct position from current depth.
	itr.seek(itr.index)

	return index, value
}

// seek positions the stack to the given index from the current depth.
// Elements and indexes below the current depth are assumed to be correct.
func (itr *ListIterator) seek(index int) {
	// Iterate over each level until we reach a leaf node.
	for {
		elem := &itr.stack[itr.depth]
		elem.index = ((itr.list.origin + index) >> (elem.node.depth() * listNodeBits)) & listNodeMask

		switch node := elem.node.(type) {
		case *listBranchNode:
			child := node.children[elem.index]
			itr.stack[itr.depth+1] = listIteratorElem{node: child}
			itr.depth++
		case *listLeafNode:
			return
		}
	}
}

// listIteratorElem represents the node and it's child index within the stack.
type listIteratorElem struct {
	node  listNode
	index int
}

// Size thresholds for each type of branch node.
const (
	maxArrayMapSize      = 8
	maxBitmapIndexedSize = 16
)

// Segment bit shifts within the map tree.
const (
	mapNodeBits = 5
	mapNodeSize = 1 << mapNodeBits
	mapNodeMask = mapNodeSize - 1
)

// Map represents an immutable hash map implementation. The map uses a Hasher
// to generate hashes and check for equality of key values.
//
// It is implemented as an Hash Array Mapped Trie.
type Map struct {
	size   int     // total number of key/value pairs
	root   mapNode // root node of trie
	hasher Hasher  // hasher implementation
}

// NewMap returns a new instance of Map. If hasher is nil, a default hasher
// implementation will automatically be chosen based on the first key added.
// Default hasher implementations only exist for int, string, and byte slice types.
func NewMap(hasher Hasher) *Map {
	return &Map{
		hasher: hasher,
	}
}

// Len returns the number of elements in the map.
func (m *Map) Len() int {
	return m.size
}

// Get returns the value for a given key and a flag indicating whether the
// key exists. This flag distinguishes a nil value set on a key versus a
// non-existent key in the map.
func (m *Map) Get(key interface{}) (value interface{}, ok bool) {
	if m.root == nil {
		return nil, false
	}
	keyHash := m.hasher.Hash(key)
	return m.root.get(key, 0, keyHash, m.hasher)
}

// Set returns a map with the key set to the new value. A nil value is allowed.
//
// This function will return a new map even if the updated value is the same as
// the existing value because Map does not track value equality.
func (m *Map) Set(key, value interface{}) *Map {
	// Set a hasher on the first value if one does not already exist.
	hasher := m.hasher
	if hasher == nil {
		switch key.(type) {
		case int:
			hasher = &intHasher{}
		case string:
			hasher = &stringHasher{}
		case []byte:
			hasher = &byteSliceHasher{}
		default:
			panic(fmt.Sprintf("immutable.Map.Set: must set hasher for %T type", key))
		}
	}

	// If the map is empty, initialize with a simple array node.
	if m.root == nil {
		return &Map{
			size:   1,
			root:   &mapArrayNode{entries: []mapEntry{{key: key, value: value}}},
			hasher: hasher,
		}
	}

	// Otherwise copy the map and delegate insertion to the root.
	// Resized will return true if the key does not currently exist.
	var resized bool
	other := &Map{
		size:   m.size,
		root:   m.root.set(key, value, 0, hasher.Hash(key), hasher, &resized),
		hasher: hasher,
	}
	if resized {
		other.size++
	}
	return other
}

// Delete returns a map with the given key removed.
// Removing a non-existent key will cause this method to return the same map.
func (m *Map) Delete(key interface{}) *Map {
	// Return original map if no keys exist.
	if m.root == nil {
		return m
	}

	// If the delete did not change the node then return the original map.
	newRoot := m.root.delete(key, 0, m.hasher.Hash(key), m.hasher)
	if newRoot == m.root {
		return m
	}

	// Return copy of map with new root and decreased size.
	return &Map{
		size:   m.size - 1,
		root:   newRoot,
		hasher: m.hasher,
	}
}

// Iterator returns a new iterator for the map.
func (m *Map) Iterator() *MapIterator {
	itr := &MapIterator{m: m}
	itr.First()
	return itr
}

// mapNode represents any node in the map tree.
type mapNode interface {
	get(key interface{}, shift uint, keyHash uint32, h Hasher) (value interface{}, ok bool)
	set(key, value interface{}, shift uint, keyHash uint32, h Hasher, resized *bool) mapNode
	delete(key interface{}, shift uint, keyHash uint32, h Hasher) mapNode
}

var _ mapNode = (*mapArrayNode)(nil)
var _ mapNode = (*mapBitmapIndexedNode)(nil)
var _ mapNode = (*mapHashArrayNode)(nil)
var _ mapNode = (*mapValueNode)(nil)
var _ mapNode = (*mapHashCollisionNode)(nil)

// mapLeafNode represents a node that stores a single key hash at the leaf of the map tree.
type mapLeafNode interface {
	mapNode
	keyHashValue() uint32
}

var _ mapLeafNode = (*mapValueNode)(nil)
var _ mapLeafNode = (*mapHashCollisionNode)(nil)

// mapArrayNode is a map node that stores key/value pairs in a slice.
// Entries are stored in insertion order. An array node expands into a bitmap
// indexed node once a given threshold size is crossed.
type mapArrayNode struct {
	entries []mapEntry
}

// indexOf returns the entry index of the given key. Returns -1 if key not found.
func (n *mapArrayNode) indexOf(key interface{}, h Hasher) int {
	for i := range n.entries {
		if h.Equal(n.entries[i].key, key) {
			return i
		}
	}
	return -1
}

// get returns the value for the given key.
func (n *mapArrayNode) get(key interface{}, shift uint, keyHash uint32, h Hasher) (value interface{}, ok bool) {
	i := n.indexOf(key, h)
	if i == -1 {
		return nil, false
	}
	return n.entries[i].value, true
}

// set inserts or updates the value for a given key. If the key is inserted and
// the new size crosses the max size threshold, a bitmap indexed node is returned.
func (n *mapArrayNode) set(key, value interface{}, shift uint, keyHash uint32, h Hasher, resized *bool) mapNode {
	idx := n.indexOf(key, h)

	// Mark as resized if the key doesn't exist.
	if idx == -1 {
		*resized = true
	}

	// If we are adding and it crosses the max size threshold, expand the node.
	// We do this by continually setting the entries to a value node and expanding.
	if idx == -1 && len(n.entries) >= maxArrayMapSize {
		var node mapNode = newMapValueNode(h.Hash(key), key, value)
		for _, entry := range n.entries {
			node = node.set(entry.key, entry.value, 0, h.Hash(entry.key), h, resized)
		}
		return node
	}

	// Update existing entry if a match is found.
	// Otherwise append to the end of the element list if it doesn't exist.
	var other mapArrayNode
	if idx != -1 {
		other.entries = make([]mapEntry, len(n.entries))
		copy(other.entries, n.entries)
		other.entries[idx] = mapEntry{key, value}
	} else {
		other.entries = make([]mapEntry, len(n.entries)+1)
		copy(other.entries, n.entries)
		other.entries[len(other.entries)-1] = mapEntry{key, value}
	}
	return &other
}

// delete removes the given key from the node. Returns the same node if key does
// not exist. Returns a nil node when removing the last entry.
func (n *mapArrayNode) delete(key interface{}, shift uint, keyHash uint32, h Hasher) mapNode {
	idx := n.indexOf(key, h)

	// Return original node if key does not exist.
	if idx == -1 {
		return n
	}

	// Return nil if this node will contain no nodes.
	if len(n.entries) == 1 {
		return nil
	}

	// Otherwise create a copy with the given entry removed.
	other := &mapArrayNode{entries: make([]mapEntry, len(n.entries)-1)}
	copy(other.entries[:idx], n.entries[:idx])
	copy(other.entries[idx:], n.entries[idx+1:])
	return other
}

// mapBitmapIndexedNode represents a map branch node with a variable number of
// node slots and indexed using a bitmap. Indexes for the node slots are
// calculated by counting the number of set bits before the target bit using popcount.
type mapBitmapIndexedNode struct {
	bitmap uint32
	nodes  []mapNode
}

// get returns the value for the given key.
func (n *mapBitmapIndexedNode) get(key interface{}, shift uint, keyHash uint32, h Hasher) (value interface{}, ok bool) {
	bit := uint32(1) << ((keyHash >> shift) & mapNodeMask)
	if (n.bitmap & bit) == 0 {
		return nil, false
	}
	child := n.nodes[bits.OnesCount32(n.bitmap&(bit-1))]
	return child.get(key, shift+mapNodeBits, keyHash, h)
}

// set inserts or updates the value for the given key. If a new key is inserted
// and the size crosses the max size threshold then a hash array node is returned.
func (n *mapBitmapIndexedNode) set(key, value interface{}, shift uint, keyHash uint32, h Hasher, resized *bool) mapNode {
	// Extract the index for the bit segment of the key hash.
	keyHashFrag := (keyHash >> shift) & mapNodeMask

	// Determine the bit based on the hash index.
	bit := uint32(1) << keyHashFrag
	exists := (n.bitmap & bit) != 0

	// Mark as resized if the key doesn't exist.
	if !exists {
		*resized = true
	}

	// Find index of node based on popcount of bits before it.
	idx := bits.OnesCount32(n.bitmap & (bit - 1))

	// If the node already exists, delegate set operation to it.
	// If the node doesn't exist then create a simple value leaf node.
	var newNode mapNode
	if exists {
		newNode = n.nodes[idx].set(key, value, shift+mapNodeBits, keyHash, h, resized)
	} else {
		newNode = newMapValueNode(keyHash, key, value)
	}

	// Convert to a hash-array node once we exceed the max bitmap size.
	// Copy each node based on their bit position within the bitmap.
	if !exists && len(n.nodes) > maxBitmapIndexedSize {
		var other mapHashArrayNode
		for i := uint(0); i < uint(len(other.nodes)); i++ {
			if n.bitmap&(uint32(1)<<i) != 0 {
				other.nodes[i] = n.nodes[other.count]
				other.count++
			}
		}
		other.nodes[keyHashFrag] = newNode
		other.count++
		return &other
	}

	// If node exists at given slot then overwrite it with new node.
	// Otherwise expand the node list and insert new node into appropriate position.
	other := &mapBitmapIndexedNode{bitmap: n.bitmap | bit}
	if exists {
		other.nodes = make([]mapNode, len(n.nodes))
		copy(other.nodes, n.nodes)
		other.nodes[idx] = newNode
	} else {
		other.nodes = make([]mapNode, len(n.nodes)+1)
		copy(other.nodes, n.nodes[:idx])
		other.nodes[idx] = newNode
		copy(other.nodes[idx+1:], n.nodes[idx:])
	}
	return other
}

// delete removes the key from the tree. If the key does not exist then the
// original node is returned. If removing the last child node then a nil is
// returned. Note that shrinking the node will not convert it to an array node.
func (n *mapBitmapIndexedNode) delete(key interface{}, shift uint, keyHash uint32, h Hasher) mapNode {
	bit := uint32(1) << ((keyHash >> shift) & mapNodeMask)

	// Return original node if key does not exist.
	if (n.bitmap & bit) == 0 {
		return n
	}

	// Find index of node based on popcount of bits before it.
	idx := bits.OnesCount32(n.bitmap & (bit - 1))

	// Delegate delete to child node.
	child := n.nodes[idx]
	newChild := child.delete(key, shift+mapNodeBits, keyHash, h)

	// Return original node if key doesn't exist in child.
	if newChild == child {
		return n
	}

	// Remove if returned child has been deleted.
	if newChild == nil {
		// If we won't have any children then return nil.
		if len(n.nodes) == 1 {
			return nil
		}

		// Return copy with bit removed from bitmap and node removed from node list.
		other := &mapBitmapIndexedNode{bitmap: n.bitmap ^ bit, nodes: make([]mapNode, len(n.nodes)-1)}
		copy(other.nodes[:idx], n.nodes[:idx])
		copy(other.nodes[idx:], n.nodes[idx+1:])
		return other
	}

	// Return copy with child updated.
	other := &mapBitmapIndexedNode{bitmap: n.bitmap, nodes: make([]mapNode, len(n.nodes))}
	copy(other.nodes, n.nodes)
	other.nodes[idx] = newChild
	return other
}

// mapHashArrayNode is a map branch node that stores nodes in a fixed length
// array. Child nodes are indexed by their index bit segment for the current depth.
type mapHashArrayNode struct {
	count uint                 // number of set nodes
	nodes [mapNodeSize]mapNode // child node slots, may contain empties
}

// get returns the value for the given key.
func (n *mapHashArrayNode) get(key interface{}, shift uint, keyHash uint32, h Hasher) (value interface{}, ok bool) {
	node := n.nodes[(keyHash>>shift)&mapNodeMask]
	if node == nil {
		return nil, false
	}
	return node.get(key, shift+mapNodeBits, keyHash, h)
}

// set returns a node with the value set for the given key.
func (n *mapHashArrayNode) set(key, value interface{}, shift uint, keyHash uint32, h Hasher, resized *bool) mapNode {
	idx := (keyHash >> shift) & mapNodeMask
	node := n.nodes[idx]

	// If node at index doesn't exist, create a simple value leaf node.
	// Otherwise delegate set to child node.
	var newNode mapNode
	if node == nil {
		*resized = true
		newNode = newMapValueNode(keyHash, key, value)
	} else {
		newNode = node.set(key, value, shift+mapNodeBits, keyHash, h, resized)
	}

	// Return a copy of node with updated child node (and updated size, if new).
	other := *n
	if node == nil {
		other.count++
	}
	other.nodes[idx] = newNode
	return &other
}

// delete returns a node with the given key removed. Returns the same node if
// the key does not exist. If node shrinks to within bitmap-indexed size then
// converts to a bitmap-indexed node.
func (n *mapHashArrayNode) delete(key interface{}, shift uint, keyHash uint32, h Hasher) mapNode {
	idx := (keyHash >> shift) & mapNodeMask
	node := n.nodes[idx]

	// Return original node if child is not found.
	if node == nil {
		return n
	}

	// Return original node if child is unchanged.
	newNode := node.delete(key, shift+mapNodeBits, keyHash, h)
	if newNode == node {
		return n
	}

	// If we remove a node and drop below a threshold, convert back to bitmap indexed node.
	if newNode == nil && n.count <= maxBitmapIndexedSize {
		other := &mapBitmapIndexedNode{nodes: make([]mapNode, 0, n.count-1)}
		for i, child := range n.nodes {
			if child != nil && uint32(i) != idx {
				other.bitmap |= 1 << uint(i)
				other.nodes = append(other.nodes, child)
			}
		}
		return other
	}

	// Return copy of node with child updated.
	other := *n
	other.nodes[idx] = newNode
	if newNode == nil {
		other.count--
	}
	return &other
}

// mapValueNode represents a leaf node with a single key/value pair.
// A value node can be converted to a hash collision leaf node if a different
// key with the same keyHash is inserted.
type mapValueNode struct {
	keyHash uint32
	key     interface{}
	value   interface{}
}

// newMapValueNode returns a new instance of mapValueNode.
func newMapValueNode(keyHash uint32, key, value interface{}) *mapValueNode {
	return &mapValueNode{
		keyHash: keyHash,
		key:     key,
		value:   value,
	}
}

// keyHashValue returns the key hash for this node.
func (n *mapValueNode) keyHashValue() uint32 {
	return n.keyHash
}

// get returns the value for the given key.
func (n *mapValueNode) get(key interface{}, shift uint, keyHash uint32, h Hasher) (value interface{}, ok bool) {
	if !h.Equal(n.key, key) {
		return nil, false
	}
	return n.value, true
}

// set returns a new node with the new value set for the key. If the key equals
// the node's key then a new value node is returned. If key is not equal to the
// node's key but has the same hash then a hash collision node is returned.
// Otherwise the nodes are merged into a branch node.
func (n *mapValueNode) set(key, value interface{}, shift uint, keyHash uint32, h Hasher, resized *bool) mapNode {
	// If the keys match then return a new value node overwriting the value.
	if h.Equal(n.key, key) {
		return newMapValueNode(n.keyHash, key, value)
	}

	*resized = true

	// Recursively merge nodes together if key hashes are different.
	if n.keyHash != keyHash {
		return mergeIntoNode(n, shift, keyHash, key, value)
	}

	// Merge into collision node if hash matches.
	return &mapHashCollisionNode{keyHash: keyHash, entries: []mapEntry{
		{key: n.key, value: n.value},
		{key: key, value: value},
	}}
}

// delete returns nil if the key matches the node's key. Otherwise returns the original node.
func (n *mapValueNode) delete(key interface{}, shift uint, keyHash uint32, h Hasher) mapNode {
	// Return original node if the keys do not match.
	if !h.Equal(n.key, key) {
		return n
	}

	// Otherwise remove the node if keys do match.
	return nil
}

// mapHashCollisionNode represents a leaf node that contains two or more key/value
// pairs with the same key hash. Single pairs for a hash are stored as value nodes.
type mapHashCollisionNode struct {
	keyHash uint32 // key hash for all entries
	entries []mapEntry
}

// keyHashValue returns the key hash for all entries on the node.
func (n *mapHashCollisionNode) keyHashValue() uint32 {
	return n.keyHash
}

// indexOf returns the index of the entry for the given key.
// Returns -1 if the key does not exist in the node.
func (n *mapHashCollisionNode) indexOf(key interface{}, h Hasher) int {
	for i := range n.entries {
		if h.Equal(n.entries[i].key, key) {
			return i
		}
	}
	return -1
}

// get returns the value for the given key.
func (n *mapHashCollisionNode) get(key interface{}, shift uint, keyHash uint32, h Hasher) (value interface{}, ok bool) {
	for i := range n.entries {
		if h.Equal(n.entries[i].key, key) {
			return n.entries[i].value, true
		}
	}
	return nil, false
}

// set returns a copy of the node with key set to the given value.
func (n *mapHashCollisionNode) set(key, value interface{}, shift uint, keyHash uint32, h Hasher, resized *bool) mapNode {
	// Merge node with key/value pair if this is not a hash collision.
	if n.keyHash != keyHash {
		*resized = true
		return mergeIntoNode(n, shift, keyHash, key, value)
	}

	// Append to end of node if key doesn't exist & mark resized.
	// Otherwise copy nodes and overwrite at matching key index.
	other := &mapHashCollisionNode{keyHash: n.keyHash}
	if idx := n.indexOf(key, h); idx == -1 {
		*resized = true
		other.entries = make([]mapEntry, len(n.entries)+1)
		copy(other.entries, n.entries)
		other.entries[len(other.entries)-1] = mapEntry{key, value}
	} else {
		other.entries = make([]mapEntry, len(n.entries))
		copy(other.entries, n.entries)
		other.entries[idx] = mapEntry{key, value}
	}
	return other
}

// delete returns a node with the given key deleted. Returns the same node if
// the key does not exist. If removing the key would shrink the node to a single
// entry then a value node is returned.
func (n *mapHashCollisionNode) delete(key interface{}, shift uint, keyHash uint32, h Hasher) mapNode {
	idx := n.indexOf(key, h)

	// Return original node if key is not found.
	if idx == -1 {
		return n
	}

	// Convert to value node if we move to one entry.
	if len(n.entries) == 2 {
		return &mapValueNode{
			keyHash: n.keyHash,
			key:     n.entries[idx^1].key,
			value:   n.entries[idx^1].value,
		}
	}

	// Otherwise return copy with entry removed.
	other := &mapHashCollisionNode{keyHash: n.keyHash, entries: make([]mapEntry, len(n.entries)-1)}
	copy(other.entries[:idx], n.entries[:idx])
	copy(other.entries[idx:], n.entries[idx+1:])
	return other
}

// mergeIntoNode merges a key/value pair into an existing node.
// Caller must verify that node's keyHash is not equal to keyHash.
func mergeIntoNode(node mapLeafNode, shift uint, keyHash uint32, key, value interface{}) mapNode {
	idx1 := (node.keyHashValue() >> shift) & mapNodeMask
	idx2 := (keyHash >> shift) & mapNodeMask

	// Recursively build branch nodes to combine the node and its key.
	other := &mapBitmapIndexedNode{bitmap: (1 << idx1) | (1 << idx2)}
	if idx1 == idx2 {
		other.nodes = []mapNode{mergeIntoNode(node, shift+mapNodeBits, keyHash, key, value)}
	} else {
		if newNode := newMapValueNode(keyHash, key, value); idx1 < idx2 {
			other.nodes = []mapNode{node, newNode}
		} else {
			other.nodes = []mapNode{newNode, node}
		}
	}
	return other
}

// mapEntry represents a single key/value pair.
type mapEntry struct {
	key   interface{}
	value interface{}
}

// MapIterator represents an iterator over a map's key/value pairs. Although
// map keys are not sorted, the iterator's order is deterministic.
type MapIterator struct {
	m *Map // source map

	stack [32]mapIteratorElem // search stack
	depth int                 // stack depth
}

// Done returns true if no more elements remain in the iterator.
func (itr *MapIterator) Done() bool {
	return itr.depth == -1
}

// First resets the iterator to the first key/value pair.
func (itr *MapIterator) First() {
	// Exit immediately if the map is empty.
	if itr.m.root == nil {
		itr.depth = -1
		return
	}

	// Initialize the stack to the left most element.
	itr.stack[0] = mapIteratorElem{node: itr.m.root}
	itr.depth = 0
	itr.first()
}

// Next returns the next key/value pair. Returns a nil key when no elements remain.
func (itr *MapIterator) Next() (key, value interface{}) {
	// Return nil key if iteration is done.
	if itr.Done() {
		return nil, nil
	}

	// Retrieve current index & value. Current node is always a leaf.
	elem := &itr.stack[itr.depth]
	switch node := elem.node.(type) {
	case *mapArrayNode:
		entry := &node.entries[elem.index]
		key, value = entry.key, entry.value
	case *mapValueNode:
		key, value = node.key, node.value
	case *mapHashCollisionNode:
		entry := &node.entries[elem.index]
		key, value = entry.key, entry.value
	}

	// Move up stack until we find a node that has remaining position ahead
	// and move that element forward by one.
	itr.next()
	return key, value
}

// next moves to the next available key.
func (itr *MapIterator) next() {
	for ; itr.depth >= 0; itr.depth-- {
		elem := &itr.stack[itr.depth]

		switch node := elem.node.(type) {
		case *mapArrayNode:
			if elem.index < len(node.entries)-1 {
				elem.index++
				return
			}

		case *mapBitmapIndexedNode:
			if elem.index < len(node.nodes)-1 {
				elem.index++
				itr.stack[itr.depth+1].node = node.nodes[elem.index]
				itr.depth++
				itr.first()
				return
			}

		case *mapHashArrayNode:
			for i := elem.index + 1; i < len(node.nodes); i++ {
				if node.nodes[i] != nil {
					elem.index = i
					itr.stack[itr.depth+1].node = node.nodes[elem.index]
					itr.depth++
					itr.first()
					return
				}
			}

		case *mapValueNode:
			continue // always the last value, traverse up

		case *mapHashCollisionNode:
			if elem.index < len(node.entries)-1 {
				elem.index++
				return
			}
		}
	}
}

// first positions the stack left most index.
// Elements and indexes at and below the current depth are assumed to be correct.
func (itr *MapIterator) first() {
	for ; ; itr.depth++ {
		elem := &itr.stack[itr.depth]

		switch node := elem.node.(type) {
		case *mapBitmapIndexedNode:
			elem.index = 0
			itr.stack[itr.depth+1].node = node.nodes[0]

		case *mapHashArrayNode:
			for i := 0; i < len(node.nodes); i++ {
				if node.nodes[i] != nil { // find first node
					elem.index = i
					itr.stack[itr.depth+1].node = node.nodes[i]
					break
				}
			}

		default: // *mapArrayNode, mapLeafNode
			elem.index = 0
			return
		}
	}
}

// mapIteratorElem represents a node/index pair in the MapIterator stack.
type mapIteratorElem struct {
	node  mapNode
	index int
}

// Sorted map child node limit size.
const (
	sortedMapNodeSize = 32
)

// SortedMap represents a map of key/value pairs sorted by key. The sort order
// is determined by the Comparer used by the map.
//
// This map is implemented as a B+tree.
type SortedMap struct {
	size     int           // total number of key/value pairs
	root     sortedMapNode // root of b+tree
	comparer Comparer
}

// NewSortedMap returns a new instance of SortedMap. If comparer is nil then
// a default comparer is set after the first key is inserted. Default comparers
// exist for int, string, and byte slice keys.
func NewSortedMap(comparer Comparer) *SortedMap {
	return &SortedMap{
		comparer: comparer,
	}
}

// Len returns the number of elements in the sorted map.
func (m *SortedMap) Len() int {
	return m.size
}

// Get returns the value for a given key and a flag indicating if the key is set.
// The flag can be used to distinguish between a nil-set key versus an unset key.
func (m *SortedMap) Get(key interface{}) (interface{}, bool) {
	if m.root == nil {
		return nil, false
	}
	return m.root.get(key, m.comparer)
}

// Set returns a copy of the map with the key set to the given value.
func (m *SortedMap) Set(key, value interface{}) *SortedMap {
	// Set a comparer on the first value if one does not already exist.
	comparer := m.comparer
	if comparer == nil {
		switch key.(type) {
		case int:
			comparer = &intComparer{}
		case string:
			comparer = &stringComparer{}
		case []byte:
			comparer = &byteSliceComparer{}
		default:
			panic(fmt.Sprintf("immutable.SortedMap.Set: must set comparer for %T type", key))
		}
	}

	// If no values are set then initialize with a leaf node.
	if m.root == nil {
		return &SortedMap{
			size:     1,
			root:     &sortedMapLeafNode{entries: []mapEntry{{key: key, value: value}}},
			comparer: comparer,
		}
	}

	// Otherwise delegate to root node.
	// If a split occurs then grow the tree from the root.
	var resized bool
	newRoot, splitNode := m.root.set(key, value, comparer, &resized)
	if splitNode != nil {
		newRoot = newSortedMapBranchNode(newRoot, splitNode)
	}

	// Return a new map with the new root.
	other := &SortedMap{
		size:     m.size,
		root:     newRoot,
		comparer: comparer,
	}
	if resized {
		other.size++
	}
	return other
}

// Delete returns a copy of the map with the key removed.
// Returns the original map if key does not exist.
func (m *SortedMap) Delete(key interface{}) *SortedMap {
	// Return original map if no keys exist.
	if m.root == nil {
		return m
	}

	// If the delete did not change the node then return the original map.
	newRoot := m.root.delete(key, m.comparer)
	if newRoot == m.root {
		return m
	}

	// Return new copy with the root and size updated.
	return &SortedMap{
		size:     m.size - 1,
		root:     newRoot,
		comparer: m.comparer,
	}
}

// Iterator returns a new iterator for this map positioned at the first key.
func (m *SortedMap) Iterator() *SortedMapIterator {
	itr := &SortedMapIterator{m: m}
	itr.First()
	return itr
}

// sortedMapNode represents a branch or leaf node in the sorted map.
type sortedMapNode interface {
	minKey() interface{}
	indexOf(key interface{}, c Comparer) int
	get(key interface{}, c Comparer) (value interface{}, ok bool)
	set(key, value interface{}, c Comparer, resized *bool) (sortedMapNode, sortedMapNode)
	delete(key interface{}, c Comparer) sortedMapNode
}

var _ sortedMapNode = (*sortedMapBranchNode)(nil)
var _ sortedMapNode = (*sortedMapLeafNode)(nil)

// sortedMapBranchNode represents a branch in the sorted map.
type sortedMapBranchNode struct {
	elems []sortedMapBranchElem
}

// newSortedMapBranchNode returns a new branch node with the given child nodes.
func newSortedMapBranchNode(children ...sortedMapNode) *sortedMapBranchNode {
	// Fetch min keys for every child.
	elems := make([]sortedMapBranchElem, len(children))
	for i, child := range children {
		elems[i] = sortedMapBranchElem{
			key:  child.minKey(),
			node: child,
		}
	}

	return &sortedMapBranchNode{elems: elems}
}

// minKey returns the lowest key stored in this node's tree.
func (n *sortedMapBranchNode) minKey() interface{} {
	return n.elems[0].node.minKey()
}

// indexOf returns the index of the key within the child nodes.
func (n *sortedMapBranchNode) indexOf(key interface{}, c Comparer) int {
	if idx := sort.Search(len(n.elems), func(i int) bool { return c.Compare(n.elems[i].key, key) == 1 }); idx > 0 {
		return idx - 1
	}
	return 0
}

// get returns the value for the given key.
func (n *sortedMapBranchNode) get(key interface{}, c Comparer) (value interface{}, ok bool) {
	idx := n.indexOf(key, c)
	return n.elems[idx].node.get(key, c)
}

// set returns a copy of the node with the key set to the given value.
func (n *sortedMapBranchNode) set(key, value interface{}, c Comparer, resized *bool) (sortedMapNode, sortedMapNode) {
	idx := n.indexOf(key, c)

	// Delegate insert to child node.
	newNode, splitNode := n.elems[idx].node.set(key, value, c, resized)

	// If no split occurs, copy branch and update keys.
	// If the child splits, insert new key/child into copy of branch.
	var other sortedMapBranchNode
	if splitNode == nil {
		other.elems = make([]sortedMapBranchElem, len(n.elems))
		copy(other.elems, n.elems)
		other.elems[idx] = sortedMapBranchElem{
			key:  newNode.minKey(),
			node: newNode,
		}
	} else {
		other.elems = make([]sortedMapBranchElem, len(n.elems)+1)
		copy(other.elems[:idx], n.elems[:idx])
		copy(other.elems[idx+1:], n.elems[idx:])
		other.elems[idx] = sortedMapBranchElem{
			key:  newNode.minKey(),
			node: newNode,
		}
		other.elems[idx+1] = sortedMapBranchElem{
			key:  splitNode.minKey(),
			node: splitNode,
		}
	}

	// If the child splits and we have no more room then we split too.
	if len(other.elems) > sortedMapNodeSize {
		splitIdx := len(other.elems) / 2
		newNode := &sortedMapBranchNode{elems: other.elems[:splitIdx]}
		splitNode := &sortedMapBranchNode{elems: other.elems[splitIdx:]}
		return newNode, splitNode
	}

	// Otherwise return the new branch node with the updated entry.
	return &other, nil
}

// delete returns a node with the key removed. Returns the same node if the key
// does not exist. Returns nil if all child nodes are removed.
func (n *sortedMapBranchNode) delete(key interface{}, c Comparer) sortedMapNode {
	idx := n.indexOf(key, c)

	// Return original node if child has not changed.
	newNode := n.elems[idx].node.delete(key, c)
	if newNode == n.elems[idx].node {
		return n
	}

	// Remove child if it is now nil.
	if newNode == nil {
		// If this node will become empty then simply return nil.
		if len(n.elems) == 1 {
			return nil
		}

		// Return a copy without the given node.
		other := &sortedMapBranchNode{elems: make([]sortedMapBranchElem, len(n.elems)-1)}
		copy(other.elems[:idx], n.elems[:idx])
		copy(other.elems[idx:], n.elems[idx+1:])
		return other
	}

	// Return a copy with the updated node.
	other := &sortedMapBranchNode{elems: make([]sortedMapBranchElem, len(n.elems))}
	copy(other.elems, n.elems)
	other.elems[idx] = sortedMapBranchElem{
		key:  newNode.minKey(),
		node: newNode,
	}
	return other
}

type sortedMapBranchElem struct {
	key  interface{}
	node sortedMapNode
}

// sortedMapLeafNode represents a leaf node in the sorted map.
type sortedMapLeafNode struct {
	entries []mapEntry
}

// minKey returns the first key stored in this node.
func (n *sortedMapLeafNode) minKey() interface{} {
	return n.entries[0].key
}

// indexOf returns the index of the given key.
func (n *sortedMapLeafNode) indexOf(key interface{}, c Comparer) int {
	return sort.Search(len(n.entries), func(i int) bool {
		return c.Compare(n.entries[i].key, key) != -1 // GTE
	})
}

// get returns the value of the given key.
func (n *sortedMapLeafNode) get(key interface{}, c Comparer) (value interface{}, ok bool) {
	idx := n.indexOf(key, c)

	// If the index is beyond the entry count or the key is not equal then return 'not found'.
	if idx == len(n.entries) || c.Compare(n.entries[idx].key, key) != 0 {
		return nil, false
	}

	// If the key matches then return its value.
	return n.entries[idx].value, true
}

// set returns a copy of node with the key set to the given value. If the update
// causes the node to grow beyond the maximum size then it is split in two.
func (n *sortedMapLeafNode) set(key, value interface{}, c Comparer, resized *bool) (sortedMapNode, sortedMapNode) {
	// Find the insertion index for the key.
	idx := n.indexOf(key, c)

	// If the key matches then simply return a copy with the entry overridden.
	// If there is no match then insert new entry and mark as resized.
	var newEntries []mapEntry
	if idx < len(n.entries) && c.Compare(n.entries[idx].key, key) == 0 {
		newEntries = make([]mapEntry, len(n.entries))
		copy(newEntries, n.entries)
		newEntries[idx] = mapEntry{key: key, value: value}
	} else {
		*resized = true
		newEntries = make([]mapEntry, len(n.entries)+1)
		copy(newEntries[:idx], n.entries[:idx])
		newEntries[idx] = mapEntry{key: key, value: value}
		copy(newEntries[idx+1:], n.entries[idx:])
	}

	// If the key doesn't exist and we exceed our max allowed values then split.
	if len(newEntries) > sortedMapNodeSize {
		newNode := &sortedMapLeafNode{entries: newEntries[:len(newEntries)/2]}
		splitNode := &sortedMapLeafNode{entries: newEntries[len(newEntries)/2:]}
		return newNode, splitNode
	}

	// Otherwise return the new leaf node with the updated entry.
	return &sortedMapLeafNode{entries: newEntries}, nil
}

// delete returns a copy of node with key removed. Returns the original node if
// the key does not exist. Returns nil if the removed key is the last remaining key.
func (n *sortedMapLeafNode) delete(key interface{}, c Comparer) sortedMapNode {
	idx := n.indexOf(key, c)

	// Return original node if key is not found.
	if idx >= len(n.entries) || c.Compare(n.entries[idx].key, key) != 0 {
		return n
	}

	// If this is the last entry then return nil.
	if len(n.entries) == 1 {
		return nil
	}

	// Return copy of node with entry removed.
	other := &sortedMapLeafNode{entries: make([]mapEntry, len(n.entries)-1)}
	copy(other.entries[:idx], n.entries[:idx])
	copy(other.entries[idx:], n.entries[idx+1:])
	return other
}

// SortedMapIterator represents an iterator over a sorted map.
// Iteration can occur in natural or reverse order based on use of Next() or Prev().
type SortedMapIterator struct {
	m *SortedMap // source map

	stack [32]sortedMapIteratorElem // search stack
	depth int                       // stack depth
}

// Done returns true if no more key/value pairs remain in the iterator.
func (itr *SortedMapIterator) Done() bool {
	return itr.depth == -1
}

// First moves the iterator to the first key/value pair.
func (itr *SortedMapIterator) First() {
	if itr.m.root == nil {
		itr.depth = -1
		return
	}
	itr.stack[0] = sortedMapIteratorElem{node: itr.m.root}
	itr.depth = 0
	itr.first()
}

// Last moves the iterator to the last key/value pair.
func (itr *SortedMapIterator) Last() {
	if itr.m.root == nil {
		itr.depth = -1
		return
	}
	itr.stack[0] = sortedMapIteratorElem{node: itr.m.root}
	itr.depth = 0
	itr.last()
}

// Seek moves the iterator position to the given key in the map.
// If the key does not exist then the next key is used. If no more keys exist
// then the iteartor is marked as done.
func (itr *SortedMapIterator) Seek(key interface{}) {
	if itr.m.root == nil {
		itr.depth = -1
		return
	}
	itr.stack[0] = sortedMapIteratorElem{node: itr.m.root}
	itr.depth = 0
	itr.seek(key)
}

// Next returns the current key/value pair and moves the iterator forward.
// Returns a nil key if the there are no more elements to return.
func (itr *SortedMapIterator) Next() (key, value interface{}) {
	// Return nil key if iteration is complete.
	if itr.Done() {
		return nil, nil
	}

	// Retrieve current key/value pair.
	leafElem := &itr.stack[itr.depth]
	leafNode := leafElem.node.(*sortedMapLeafNode)
	leafEntry := &leafNode.entries[leafElem.index]
	key, value = leafEntry.key, leafEntry.value

	// Move to the next available key/value pair.
	itr.next()

	// Only occurs when iterator is done.
	return key, value
}

// next moves to the next key. If no keys are after then depth is set to -1.
func (itr *SortedMapIterator) next() {
	for ; itr.depth >= 0; itr.depth-- {
		elem := &itr.stack[itr.depth]

		switch node := elem.node.(type) {
		case *sortedMapLeafNode:
			if elem.index < len(node.entries)-1 {
				elem.index++
				return
			}
		case *sortedMapBranchNode:
			if elem.index < len(node.elems)-1 {
				elem.index++
				itr.stack[itr.depth+1].node = node.elems[elem.index].node
				itr.depth++
				itr.first()
				return
			}
		}
	}
}

// Prev returns the current key/value pair and moves the iterator backward.
// Returns a nil key if the there are no more elements to return.
func (itr *SortedMapIterator) Prev() (key, value interface{}) {
	// Return nil key if iteration is complete.
	if itr.Done() {
		return nil, nil
	}

	// Retrieve current key/value pair.
	leafElem := &itr.stack[itr.depth]
	leafNode := leafElem.node.(*sortedMapLeafNode)
	leafEntry := &leafNode.entries[leafElem.index]
	key, value = leafEntry.key, leafEntry.value

	itr.prev()
	return key, value
}

// prev moves to the previous key. If no keys are before then depth is set to -1.
func (itr *SortedMapIterator) prev() {
	for ; itr.depth >= 0; itr.depth-- {
		elem := &itr.stack[itr.depth]

		switch node := elem.node.(type) {
		case *sortedMapLeafNode:
			if elem.index > 0 {
				elem.index--
				return
			}
		case *sortedMapBranchNode:
			if elem.index > 0 {
				elem.index--
				itr.stack[itr.depth+1].node = node.elems[elem.index].node
				itr.depth++
				itr.last()
				return
			}
		}
	}
}

// first positions the stack to the leftmost key from the current depth.
// Elements and indexes below the current depth are assumed to be correct.
func (itr *SortedMapIterator) first() {
	for {
		elem := &itr.stack[itr.depth]
		elem.index = 0

		switch node := elem.node.(type) {
		case *sortedMapBranchNode:
			itr.stack[itr.depth+1] = sortedMapIteratorElem{node: node.elems[elem.index].node}
			itr.depth++
		case *sortedMapLeafNode:
			return
		}
	}
}

// last positions the stack to the rightmost key from the current depth.
// Elements and indexes below the current depth are assumed to be correct.
func (itr *SortedMapIterator) last() {
	for {
		elem := &itr.stack[itr.depth]

		switch node := elem.node.(type) {
		case *sortedMapBranchNode:
			elem.index = len(node.elems) - 1
			itr.stack[itr.depth+1] = sortedMapIteratorElem{node: node.elems[elem.index].node}
			itr.depth++
		case *sortedMapLeafNode:
			elem.index = len(node.entries) - 1
			return
		}
	}
}

// seek positions the stack to the given key from the current depth.
// Elements and indexes below the current depth are assumed to be correct.
func (itr *SortedMapIterator) seek(key interface{}) {
	for {
		elem := &itr.stack[itr.depth]
		elem.index = elem.node.indexOf(key, itr.m.comparer)

		switch node := elem.node.(type) {
		case *sortedMapBranchNode:
			itr.stack[itr.depth+1] = sortedMapIteratorElem{node: node.elems[elem.index].node}
			itr.depth++
		case *sortedMapLeafNode:
			if elem.index == len(node.entries) {
				itr.next()
			}
			return
		}
	}
}

// sortedMapIteratorElem represents node/index pair in the SortedMapIterator stack.
type sortedMapIteratorElem struct {
	node  sortedMapNode
	index int
}

// Hasher hashes keys and checks them for equality.
type Hasher interface {
	// Computes a 32-bit hash for key.
	Hash(key interface{}) uint32

	// Returns true if a and b are equal.
	Equal(a, b interface{}) bool
}

// intHasher implements Hasher for int keys.
type intHasher struct{}

// Hash returns a hash for key.
func (h *intHasher) Hash(key interface{}) uint32 {
	return hashUint64(uint64(key.(int)))
}

// Equal returns true if a is equal to b. Otherwise returns false.
// Panics if a and b are not ints.
func (h *intHasher) Equal(a, b interface{}) bool {
	return a.(int) == b.(int)
}

// stringHasher implements Hasher for string keys.
type stringHasher struct{}

// Hash returns a hash for value.
func (h *stringHasher) Hash(value interface{}) uint32 {
	var hash uint32
	for i, value := 0, value.(string); i < len(value); i++ {
		hash = 31*hash + uint32(value[i])
	}
	return hash
}

// Equal returns true if a is equal to b. Otherwise returns false.
// Panics if a and b are not strings.
func (h *stringHasher) Equal(a, b interface{}) bool {
	return a.(string) == b.(string)
}

// byteSliceHasher implements Hasher for string keys.
type byteSliceHasher struct{}

// Hash returns a hash for value.
func (h *byteSliceHasher) Hash(value interface{}) uint32 {
	var hash uint32
	for i, value := 0, value.([]byte); i < len(value); i++ {
		hash = 31*hash + uint32(value[i])
	}
	return hash
}

// Equal returns true if a is equal to b. Otherwise returns false.
// Panics if a and b are not byte slices.
func (h *byteSliceHasher) Equal(a, b interface{}) bool {
	return bytes.Equal(a.([]byte), b.([]byte))
}

// hashUint64 returns a 32-bit hash for a 64-bit value.
func hashUint64(value uint64) uint32 {
	hash := value
	for value > 0xffffffff {
		value /= 0xffffffff
		hash ^= value
	}
	return uint32(hash)
}

// Comparer allows the comparison of two keys for the purpose of sorting.
type Comparer interface {
	// Returns -1 if a is less than b, returns 1 if a is greater than b,
	// and returns 0 if a is equal to b.
	Compare(a, b interface{}) int
}

// intComparer compares two integers. Implements Comparer.
type intComparer struct{}

// Compare returns -1 if a is less than b, returns 1 if a is greater than b, and
// returns 0 if a is equal to b. Panic if a or b is not an int.
func (c *intComparer) Compare(a, b interface{}) int {
	if i, j := a.(int), b.(int); i < j {
		return -1
	} else if i > j {
		return 1
	}
	return 0
}

// stringComparer compares two strings. Implements Comparer.
type stringComparer struct{}

// Compare returns -1 if a is less than b, returns 1 if a is greater than b, and
// returns 0 if a is equal to b. Panic if a or b is not a string.
func (c *stringComparer) Compare(a, b interface{}) int {
	return strings.Compare(a.(string), b.(string))
}

// byteSliceComparer compares two byte slices. Implements Comparer.
type byteSliceComparer struct{}

// Compare returns -1 if a is less than b, returns 1 if a is greater than b, and
// returns 0 if a is equal to b. Panic if a or b is not a byte slice.
func (c *byteSliceComparer) Compare(a, b interface{}) int {
	return bytes.Compare(a.([]byte), b.([]byte))
}