1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
|
package bolt
import (
"sort"
"unsafe"
)
// txid represents the internal transaction identifier.
type txid uint64
// Tx represents a read-only or read/write transaction on the database.
// Read-only transactions can be used for retrieving values for keys and creating cursors.
// Read/write transactions can create and remove buckets and create and remove keys.
//
// IMPORTANT: You must commit or rollback transactions when you are done with
// them. Pages can not be reclaimed by the writer until no more transactions
// are using them. A long running read transaction can cause the database to
// quickly grow.
type Tx struct {
writable bool
managed bool
db *DB
meta *meta
buckets *buckets
nodes map[pgid]*node
pages map[pgid]*page
pending []*node
}
// init initializes the transaction.
func (t *Tx) init(db *DB) {
t.db = db
t.pages = nil
// Copy the meta page since it can be changed by the writer.
t.meta = &meta{}
db.meta().copy(t.meta)
// Read in the buckets page.
t.buckets = &buckets{}
t.buckets.read(t.page(t.meta.buckets))
if t.writable {
t.pages = make(map[pgid]*page)
t.nodes = make(map[pgid]*node)
// Increment the transaction id.
t.meta.txid += txid(1)
}
}
// id returns the transaction id.
func (t *Tx) id() txid {
return t.meta.txid
}
// DB returns a reference to the database that created the transaction.
func (t *Tx) DB() *DB {
return t.db
}
// Writable returns whether the transaction can perform write operations.
func (t *Tx) Writable() bool {
return t.writable
}
// Bucket retrieves a bucket by name.
// Returns nil if the bucket does not exist.
func (t *Tx) Bucket(name string) *Bucket {
b := t.buckets.get(name)
if b == nil {
return nil
}
return &Bucket{
bucket: b,
name: name,
tx: t,
}
}
// Buckets retrieves a list of all buckets.
func (t *Tx) Buckets() []*Bucket {
buckets := make([]*Bucket, 0, len(t.buckets.items))
for name, b := range t.buckets.items {
bucket := &Bucket{
bucket: b,
name: name,
tx: t,
}
buckets = append(buckets, bucket)
}
sort.Sort(bucketsByName(buckets))
return buckets
}
// CreateBucket creates a new bucket.
// Returns an error if the bucket already exists, if the bucket name is blank, or if the bucket name is too long.
func (t *Tx) CreateBucket(name string) error {
if t.db == nil {
return ErrTxClosed
} else if !t.writable {
return ErrTxNotWritable
} else if b := t.Bucket(name); b != nil {
return ErrBucketExists
} else if len(name) == 0 {
return ErrBucketNameRequired
} else if len(name) > MaxBucketNameSize {
return ErrBucketNameTooLarge
}
// Create a blank root leaf page.
p, err := t.allocate(1)
if err != nil {
return err
}
p.flags = leafPageFlag
// Add bucket to buckets page.
t.buckets.put(name, &bucket{root: p.id})
return nil
}
// CreateBucketIfNotExists creates a new bucket if it doesn't already exist.
// Returns an error if the bucket name is blank, or if the bucket name is too long.
func (t *Tx) CreateBucketIfNotExists(name string) error {
err := t.CreateBucket(name)
if err != nil && err != ErrBucketExists {
return err
}
return nil
}
// DeleteBucket deletes a bucket.
// Returns an error if the bucket cannot be found.
func (t *Tx) DeleteBucket(name string) error {
if t.db == nil {
return ErrTxClosed
} else if !t.writable {
return ErrTxNotWritable
}
b := t.Bucket(name)
if b == nil {
return ErrBucketNotFound
}
// Remove from buckets page.
t.buckets.del(name)
// Free all pages.
t.forEachPage(b.root, 0, func(p *page, depth int) {
t.db.freelist.free(t.id(), p)
})
return nil
}
// Commit writes all changes to disk and updates the meta page.
// Returns an error if a disk write error occurs.
func (t *Tx) Commit() error {
if t.managed {
panic("managed tx commit not allowed")
} else if t.db == nil {
return ErrTxClosed
} else if !t.writable {
return ErrTxNotWritable
}
defer t.close()
// TODO(benbjohnson): Use vectorized I/O to write out dirty pages.
// Rebalance and spill data onto dirty pages.
t.rebalance()
if err := t.spill(); err != nil {
return err
}
// Spill buckets page.
p, err := t.allocate((t.buckets.size() / t.db.pageSize) + 1)
if err != nil {
return err
}
t.buckets.write(p)
// Write dirty pages to disk.
if err := t.write(); err != nil {
return err
}
// Update the meta.
t.meta.buckets = p.id
// Write meta to disk.
if err := t.writeMeta(); err != nil {
return err
}
return nil
}
// Rollback closes the transaction and ignores all previous updates.
func (t *Tx) Rollback() error {
if t.managed {
panic("managed tx rollback not allowed")
} else if t.db == nil {
return ErrTxClosed
}
t.close()
return nil
}
func (t *Tx) close() {
if t.writable {
t.db.rwlock.Unlock()
} else {
t.db.removeTx(t)
}
t.db = nil
}
// allocate returns a contiguous block of memory starting at a given page.
func (t *Tx) allocate(count int) (*page, error) {
p, err := t.db.allocate(count)
if err != nil {
return nil, err
}
// Save to our page cache.
t.pages[p.id] = p
return p, nil
}
// rebalance attempts to balance all nodes.
func (t *Tx) rebalance() {
for _, n := range t.nodes {
n.rebalance()
}
}
// spill writes all the nodes to dirty pages.
func (t *Tx) spill() error {
// Keep track of the current root nodes.
// We will update this at the end once all nodes are created.
type root struct {
node *node
pgid pgid
}
var roots []root
// Sort nodes by highest depth first.
nodes := make(nodesByDepth, 0, len(t.nodes))
for _, n := range t.nodes {
nodes = append(nodes, n)
}
sort.Sort(nodes)
// Spill nodes by deepest first.
for i := 0; i < len(nodes); i++ {
n := nodes[i]
// Save existing root buckets for later.
if n.parent == nil && n.pgid != 0 {
roots = append(roots, root{n, n.pgid})
}
// Split nodes into appropriate sized nodes.
// The first node in this list will be a reference to n to preserve ancestry.
newNodes := n.split(t.db.pageSize)
t.pending = newNodes
// If this is a root node that split then create a parent node.
if n.parent == nil && len(newNodes) > 1 {
n.parent = &node{tx: t, isLeaf: false}
nodes = append(nodes, n.parent)
}
// Add node's page to the freelist.
if n.pgid > 0 {
t.db.freelist.free(t.id(), t.page(n.pgid))
}
// Write nodes to dirty pages.
for i, newNode := range newNodes {
// Allocate contiguous space for the node.
p, err := t.allocate((newNode.size() / t.db.pageSize) + 1)
if err != nil {
return err
}
// Write the node to the page.
newNode.write(p)
newNode.pgid = p.id
newNode.parent = n.parent
// The first node should use the existing entry, other nodes are inserts.
var oldKey []byte
if i == 0 {
oldKey = n.key
} else {
oldKey = newNode.inodes[0].key
}
// Update the parent entry.
if newNode.parent != nil {
newNode.parent.put(oldKey, newNode.inodes[0].key, nil, newNode.pgid)
}
}
t.pending = nil
}
// Update roots with new roots.
for _, root := range roots {
t.buckets.updateRoot(root.pgid, root.node.root().pgid)
}
// Clear out nodes now that they are all spilled.
t.nodes = make(map[pgid]*node)
return nil
}
// write writes any dirty pages to disk.
func (t *Tx) write() error {
// Sort pages by id.
pages := make(pages, 0, len(t.pages))
for _, p := range t.pages {
pages = append(pages, p)
}
sort.Sort(pages)
// Write pages to disk in order.
for _, p := range pages {
size := (int(p.overflow) + 1) * t.db.pageSize
buf := (*[maxAllocSize]byte)(unsafe.Pointer(p))[:size]
offset := int64(p.id) * int64(t.db.pageSize)
if _, err := t.db.file.WriteAt(buf, offset); err != nil {
return err
}
}
if err := fdatasync(t.db.file); err != nil {
return err
}
// Clear out page cache.
t.pages = make(map[pgid]*page)
return nil
}
// writeMeta writes the meta to the disk.
func (t *Tx) writeMeta() error {
// Create a temporary buffer for the meta page.
buf := make([]byte, t.db.pageSize)
p := t.db.pageInBuffer(buf, 0)
t.meta.write(p)
// Write the meta page to file.
if _, err := t.db.metafile.WriteAt(buf, int64(p.id)*int64(t.db.pageSize)); err != nil {
return err
}
return nil
}
// node creates a node from a page and associates it with a given parent.
func (t *Tx) node(pgid pgid, parent *node) *node {
// Retrieve node if it's already been created.
if t.nodes == nil {
return nil
} else if n := t.nodes[pgid]; n != nil {
return n
}
// Otherwise create a branch and cache it.
n := &node{tx: t, parent: parent}
if n.parent != nil {
n.depth = n.parent.depth + 1
}
n.read(t.page(pgid))
t.nodes[pgid] = n
return n
}
// dereference removes all references to the old mmap.
func (t *Tx) dereference() {
for _, n := range t.nodes {
n.dereference()
}
for _, n := range t.pending {
n.dereference()
}
}
// page returns a reference to the page with a given id.
// If page has been written to then a temporary bufferred page is returned.
func (t *Tx) page(id pgid) *page {
// Check the dirty pages first.
if t.pages != nil {
if p, ok := t.pages[id]; ok {
return p
}
}
// Otherwise return directly from the mmap.
return t.db.page(id)
}
// pageNode returns the in-memory node, if it exists.
// Otherwise returns the underlying page.
func (t *Tx) pageNode(id pgid) (*page, *node) {
if t.nodes != nil {
if n := t.nodes[id]; n != nil {
return nil, n
}
}
return t.page(id), nil
}
// forEachPage iterates over every page within a given page and executes a function.
func (t *Tx) forEachPage(pgid pgid, depth int, fn func(*page, int)) {
p := t.page(pgid)
// Execute function.
fn(p, depth)
// Recursively loop over children.
if (p.flags & branchPageFlag) != 0 {
for i := 0; i < int(p.count); i++ {
elem := p.branchPageElement(uint16(i))
t.forEachPage(elem.pgid, depth+1, fn)
}
}
}
// Page returns page information for a given page number.
// This is only available from writable transactions.
func (t *Tx) Page(id int) (*PageInfo, error) {
if t.db == nil {
return nil, ErrTxClosed
} else if !t.writable {
return nil, ErrTxNotWritable
} else if pgid(id) >= t.meta.pgid {
return nil, nil
}
// Build the page info.
p := t.page(pgid(id))
info := &PageInfo{
ID: id,
Count: int(p.count),
OverflowCount: int(p.overflow),
}
// Determine the type (or if it's free).
if t.db.freelist.isFree(pgid(id)) {
info.Type = "free"
} else {
info.Type = p.typ()
}
return info, nil
}
|