1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
|
package bolt
import (
"bytes"
"sort"
"unsafe"
)
// mpage represents a deserialized leaf page.
// It is deserialized from an memory-mapped page and is not restricted by page size.
type mpage struct {
nodes mnodes
}
// allocator is a function that returns a set of contiguous pages.
type allocator func(count int) (*page, error)
// put inserts or replaces a key on a leaf page.
func (p *mpage) put(key []byte, value []byte) {
// Find insertion index.
index := sort.Search(len(p.nodes), func(i int) bool { return bytes.Compare(p.nodes[i].key, key) != -1 })
// If there is no existing key then add a new node.
if len(p.nodes) == 0 || !bytes.Equal(p.nodes[index].key, key) {
p.nodes = append(p.nodes, mnode{})
copy(p.nodes[index+1:], p.nodes[index:])
}
p.nodes[index].key = key
p.nodes[index].value = value
}
// read initializes the node data from an on-disk page.
func (p *mpage) read(page *page) {
p.nodes = make(mnodes, page.count)
lnodes := (*[maxNodesPerPage]lnode)(unsafe.Pointer(&page.ptr))
for i := 0; i < int(page.count); i++ {
lnode := lnodes[i]
n := &p.nodes[i]
n.key = lnode.key()
n.value = lnode.value()
}
}
// write writes the nodes onto one or more leaf pages.
func (p *mpage) write(pageSize int, allocate allocator) ([]*page, error) {
var pages []*page
for _, nodes := range p.split(pageSize) {
// Determine the total page size.
var size int = pageHeaderSize
for _, node := range p.nodes {
size += lnodeSize + len(node.key) + len(node.value)
}
// Allocate pages.
page, err := allocate(size)
if err != nil {
return nil, err
}
page.flags |= p_leaf
page.count = uint16(len(nodes))
// Loop over each node and write it to the page.
lnodes := (*[maxNodesPerPage]lnode)(unsafe.Pointer(&page.ptr))
b := (*[maxPageAllocSize]byte)(unsafe.Pointer(&page.ptr))[lnodeSize*len(nodes):]
for index, node := range nodes {
// Write node.
lnode := &lnodes[index]
lnode.pos = uint32(uintptr(unsafe.Pointer(&b[0])) - uintptr(unsafe.Pointer(&lnode)))
lnode.ksize = uint32(len(node.key))
lnode.vsize = uint32(len(node.value))
// Write data to the end of the node.
copy(b[:], node.key)
b = b[len(node.key):]
copy(b[:], node.value)
b = b[len(node.value):]
}
pages = append(pages, page)
}
return pages, nil
}
// split divides up the noes in the page into appropriately sized groups.
func (p *mpage) split(pageSize int) []mnodes {
// If we only have enough nodes for one page then just return the nodes.
if len(p.nodes) <= minKeysPerPage {
return []mnodes{p.nodes}
}
// If we're not larger than one page then just return the nodes.
var totalSize int = pageHeaderSize
for _, node := range p.nodes {
totalSize += lnodeSize + len(node.key) + len(node.value)
}
if totalSize < pageSize {
return []mnodes{p.nodes}
}
// Otherwise group into smaller pages and target a given fill size.
var size int
var group mnodes
var groups []mnodes
// Set fill threshold to 25%.
threshold := pageSize >> 4
for _, node := range p.nodes {
nodeSize := lnodeSize + len(node.key) + len(node.value)
// TODO(benbjohnson): Don't create a new group for just the last node.
if group == nil || (len(group) > minKeysPerPage && size+nodeSize > threshold) {
size = pageHeaderSize
group = make(mnodes, 0)
groups = append(groups, group)
}
size += nodeSize
group = append(group, node)
}
return groups
}
|