aboutsummaryrefslogtreecommitdiff
path: root/grammar/lr0_item.go
blob: 2934061217e79b1edd28a4d7ebed3812d7a1cc89 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
package grammar

import (
	"crypto/sha256"
	"encoding/binary"
	"fmt"
	"sort"
	"strconv"
)

type lr0ItemID [32]byte

func (id lr0ItemID) String() string {
	return fmt.Sprintf("%x", id.num())
}

func (id lr0ItemID) num() uint32 {
	return binary.LittleEndian.Uint32(id[:])
}

type lr0Item struct {
	id   lr0ItemID
	prod productionID

	// E → E + T
	//
	// Dot | Dotted Symbol | Item
	// ----+---------------+------------
	// 0   | E             | E →・E + T
	// 1   | +             | E → E・+ T
	// 2   | T             | E → E +・T
	// 3   | Nil           | E → E + T・
	dot          int
	dottedSymbol symbol

	// When initial is true, the LHS of the production is the augmented start symbol and dot is 0.
	// It looks like S' →・S.
	initial bool

	// When reducible is true, the item looks like E → E + T・.
	reducible bool

	// When kernel is true, the item is kernel item.
	kernel bool
}

func newLR0Item(prod *production, dot int) (*lr0Item, error) {
	if prod == nil {
		return nil, fmt.Errorf("production must be non-nil")
	}

	if dot < 0 || dot > prod.rhsLen {
		return nil, fmt.Errorf("dot must be between 0 and %v", prod.rhsLen)
	}

	var id lr0ItemID
	{
		b := []byte{}
		b = append(b, prod.id[:]...)
		bDot := make([]byte, 8)
		binary.LittleEndian.PutUint64(bDot, uint64(dot))
		b = append(b, bDot...)
		id = sha256.Sum256(b)
	}

	dottedSymbol := symbolNil
	if dot < prod.rhsLen {
		dottedSymbol = prod.rhs[dot]
	}

	initial := false
	if prod.lhs.isStart() && dot == 0 {
		initial = true
	}

	reducible := false
	if dot == prod.rhsLen {
		reducible = true
	}

	kernel := false
	if initial || dot > 0 {
		kernel = true
	}

	item := &lr0Item{
		id:           id,
		prod:         prod.id,
		dot:          dot,
		dottedSymbol: dottedSymbol,
		initial:      initial,
		reducible:    reducible,
		kernel:       kernel,
	}

	return item, nil
}

type kernelID [32]byte

func (id kernelID) String() string {
	return fmt.Sprintf("%x", binary.LittleEndian.Uint32(id[:]))
}

type kernel struct {
	id    kernelID
	items []*lr0Item
}

func newKernel(items []*lr0Item) (*kernel, error) {
	if len(items) == 0 {
		return nil, fmt.Errorf("a kernel need at least one item")
	}

	// Remove duplicates from items.
	var sortedItems []*lr0Item
	{
		m := map[lr0ItemID]*lr0Item{}
		for _, item := range items {
			if !item.kernel {
				return nil, fmt.Errorf("not a kernel item: %v", item)
			}
			m[item.id] = item
		}
		sortedItems = []*lr0Item{}
		for _, item := range m {
			sortedItems = append(sortedItems, item)
		}
		sort.Slice(sortedItems, func(i, j int) bool {
			return sortedItems[i].id.num() < sortedItems[j].id.num()
		})
	}

	var id kernelID
	{
		b := []byte{}
		for _, item := range sortedItems {
			b = append(b, item.id[:]...)
		}
		id = sha256.Sum256(b)
	}

	return &kernel{
		id:    id,
		items: sortedItems,
	}, nil
}

type stateNum int

const stateNumInitial = stateNum(0)

func (n stateNum) Int() int {
	return int(n)
}

func (n stateNum) String() string {
	return strconv.Itoa(int(n))
}

func (n stateNum) next() stateNum {
	return stateNum(n + 1)
}

type lr0State struct {
	*kernel
	num       stateNum
	next      map[symbol]kernelID
	reducible map[productionID]struct{}
}

type lr0Automaton struct {
	initialState kernelID
	states       map[kernelID]*lr0State
}

func genLR0Automaton(prods *productionSet, startSym symbol) (*lr0Automaton, error) {
	if !startSym.isStart() {
		return nil, fmt.Errorf("passed symbold is not a start symbol")
	}

	automaton := &lr0Automaton{
		states: map[kernelID]*lr0State{},
	}

	currentState := stateNumInitial
	knownKernels := map[kernelID]struct{}{}
	uncheckedKernels := []*kernel{}

	// Generate an initial kernel.
	{
		prods, _ := prods.findByLHS(startSym)
		initialItem, err := newLR0Item(prods[0], 0)
		if err != nil {
			return nil, err
		}

		k, err := newKernel([]*lr0Item{initialItem})
		if err != nil {
			return nil, err
		}

		automaton.initialState = k.id
		knownKernels[k.id] = struct{}{}
		uncheckedKernels = append(uncheckedKernels, k)
	}

	for len(uncheckedKernels) > 0 {
		nextUncheckedKernels := []*kernel{}
		for _, k := range uncheckedKernels {
			state, neighbours, err := genStateAndNeighbourKernels(k, prods)
			if err != nil {
				return nil, err
			}
			state.num = currentState
			currentState = currentState.next()

			automaton.states[state.id] = state

			for _, k := range neighbours {
				if _, known := knownKernels[k.id]; known {
					continue
				}
				knownKernels[k.id] = struct{}{}
				nextUncheckedKernels = append(nextUncheckedKernels, k)
			}
		}
		uncheckedKernels = nextUncheckedKernels
	}

	return automaton, nil
}

func genStateAndNeighbourKernels(k *kernel, prods *productionSet) (*lr0State, []*kernel, error) {
	items, err := genClosure(k, prods)
	if err != nil {
		return nil, nil, err
	}
	neighbours, err := genNeighbourKernels(items, prods)
	if err != nil {
		return nil, nil, err
	}

	next := map[symbol]kernelID{}
	kernels := []*kernel{}
	for _, n := range neighbours {
		next[n.symbol] = n.kernel.id
		kernels = append(kernels, n.kernel)
	}

	reducible := map[productionID]struct{}{}
	for _, item := range items {
		if item.reducible {
			reducible[item.prod] = struct{}{}
		}
	}

	return &lr0State{
		kernel:    k,
		next:      next,
		reducible: reducible,
	}, kernels, nil
}

func genClosure(k *kernel, prods *productionSet) ([]*lr0Item, error) {
	items := []*lr0Item{}
	knownItems := map[lr0ItemID]struct{}{}
	uncheckedItems := []*lr0Item{}
	for _, item := range k.items {
		items = append(items, item)
		uncheckedItems = append(uncheckedItems, item)
	}
	for len(uncheckedItems) > 0 {
		nextUncheckedItems := []*lr0Item{}
		for _, item := range uncheckedItems {
			if item.dottedSymbol.isTerminal() {
				continue
			}

			ps, _ := prods.findByLHS(item.dottedSymbol)
			for _, prod := range ps {
				item, err := newLR0Item(prod, 0)
				if err != nil {
					return nil, err
				}
				if _, exist := knownItems[item.id]; exist {
					continue
				}
				items = append(items, item)
				knownItems[item.id] = struct{}{}
				nextUncheckedItems = append(nextUncheckedItems, item)
			}
		}
		uncheckedItems = nextUncheckedItems
	}

	return items, nil
}

type neighbourKernel struct {
	symbol symbol
	kernel *kernel
}

func genNeighbourKernels(items []*lr0Item, prods *productionSet) ([]*neighbourKernel, error) {
	kItemMap := map[symbol][]*lr0Item{}
	for _, item := range items {
		if item.dottedSymbol.isNil() {
			continue
		}
		prod, ok := prods.findByID(item.prod)
		if !ok {
			return nil, fmt.Errorf("a production was not found: %v", item.prod)
		}
		kItem, err := newLR0Item(prod, item.dot+1)
		if err != nil {
			return nil, err
		}
		kItemMap[item.dottedSymbol] = append(kItemMap[item.dottedSymbol], kItem)
	}

	nextSyms := []symbol{}
	for sym := range kItemMap {
		nextSyms = append(nextSyms, sym)
	}
	sort.Slice(nextSyms, func(i, j int) bool {
		return nextSyms[i] < nextSyms[j]
	})

	kernels := []*neighbourKernel{}
	for _, sym := range nextSyms {
		k, err := newKernel(kItemMap[sym])
		if err != nil {
			return nil, err
		}
		kernels = append(kernels, &neighbourKernel{
			symbol: sym,
			kernel: k,
		})
	}

	return kernels, nil
}