


Rollout, feature flag, 
experiment, operational toggle

Different use cases for backend, frontend and 

mobile 



"Feature flags" tend to come 
up when talking about 
continuous deployment



CI: continuous integration

CD: continuous delivery

CD: continuous deployment



Types

1. rollout

2. feature flag

3. experiment

4. operational toggle



Rollout

For *rolling out* a new 
version of software

Short−lived using percentages

− a new deployment of kubernetes

− new APK released to the Play Store



Feature flag

For turning a feature *on* or 
*off* 

Medium−lived using allow list, A/B test, 

percentage, app version, etc.

− :new−chargeback−flow

− :new−debit−card−activation−screen



Experiment

For analysing behaviour

Medium−lived using allow list and A/B test

− :debit−withdrawal−test



Operational toggle

For disabling features in 
#crash−like situations

Long−lived using percentage

− :bank−barcode−payment

− :savings−bank−barcode−query−provider



We know know about the types

But they have different 
relevance for backend, 

frontend and mobile



backend

1. rollout: k8s blue/green, canary and 

~common−rollout~ common−xp

2. feature flag: ~common−rollout~ common−xp 

and datasets

3. experiment: common−xp

4. operational toggle: ~common−rollout~ 

common−xp 



frontend

1. rollout: CDN and page refreshes

2. feature flag: percentages and maybe IPs 

(no :customer/id on the website)

3. experiment: via dynamic backend control

4. operational toggle: via dynamic backend 

control 



backend

1. rollout: app stores

2. feature flag: via dynamic backend control

3. experiment: via dynamic backend control

4. operational toggle: via dynamic backend 

control 



Key differentiator is

how much *control* we have 
over the environment



backend

full control



frontend

partial control

We choose when to make a new version 

available 



mobile

very limited control

− app stores can restrict updates (worse 

for iOS)

− customers still have to download new 

versions 



Costs

− more complex code

− compatibility with old app versions

− nesting is exponential



Benefits

− dynamicity



weighting costs Ã˙ benefits

The less control we have, the 
more we value dynamicity 



weighting costs Ã˙ benefits

− backend: sometimes worth the cost

− frontend: almost always worth the cost

− mobile: *always* worth the cost



Best practices



dynamic content > feature flag

Always true for mobile, almost always for 

frontend 



Use :include−list for named 
groups 

Always true for backend, frontend and 

mobile 

	{:rules

	 #{{:types   :include−list

	    :content {:filename "debit−team−members.txt"}}}}



Always use :app−version

Only for mobile

	{:rules

	 #{{:types   :app−version

	    :content {:min−version #{{:platform :android

	                              :code     1000000}

	                             {:platform :ios

	                              :code     2000000}}}}}}



Extend ~common−rollout~ 
common−xp if required

That’s how :include−list, :app−version, 

etc. were born



Beware of many nested 
feature flags

True for backend, frontend and mobile



Don’t delete app−facing 
feature flags

True for mobile



Include a feature flag on the 
whiteboarding phase



Include deleting/retiring the 
feature flag at the end



Avoid renaming a feature flag

Use :app−version with :min−version instead



And most importantly...



*Always* rely on a feature 
flag on the app

Never do a hotfix, avoid expedited releases 

at all costs
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