


Rollout, feature flag,
experiment, operational toggle

Different use cases for backend, frontend and
mobile



"Feature flags" tend to come
up when talking about
continuous deployment



CI: continuous integration
CD: continuous delivery

CD: continuous deployment



rollout
feature flag
experiment

= w DD

operational toggle



Rollout

Short—-1lived using percentages
— a new deployment of kubernetes
— new APK released to the Play Store



Feature flag

Medium—-lived using allow list, A/B test,
percentage, app version, etc.
— :new—chargeback—-flow

— :new—debit—-card—activation—screen



Medium—-lived using allow list and A/B test
— :debit-withdrawal—-test



Operational toggle

Long—-lived using percentage
— :bank-barcode—-payment
— :savings—-bank-barcode—-query-provider



We know know about the types

But they have different
relevance for backend,
frontend and mobile



1. rollout: k8s blue/green, canary and
~common—rollout~ common—xp

2. feature flag: ~common—-rollout~ common—xp
and datasets

3. experiment: common—xp

4. operational toggle: ~common—-rollout~

common—xp



. rollout: CDN and page refreshes

feature flag: percentages and maybe IPs

1

2

(no :customer/id on the website)

3. experiment: via dynamic backend control
4

. operational toggle: via dynamic backend

control



rollout: app stores
feature flag: via dynamic backend control
experiment: via dynamic backend control

s w N

operational toggle: via dynamic backend

control



Key differentiator 1s

how much *control™ we have
over the environment






We choose when to make a new version
avallable



mobile

— app stores can restrict updates (worse

for 108S)
— customers still have to download new

versions



Costs

— more complex code
— compatibility with old app versions
— nesting 1s exponential



Benefits

— dynamicity



weighting costs A" benefits



weighting costs A" benefits

— backend: sometimes worth the cost
— frontend: almost always worth the cost
— mobile: *always* worth the cost



Best practices



dynamic content > feature flag

Always true for mobile, almost always for
frontend



Use :include-list for named
groups

Always true for backend, frontend and
mobile
{:rules
#{{:types :include-list
:content {:filename "debit-team—members.



Always use :app-version

Only for mobile

{ :rules
#{{:types :app-version
:content {:min-version #{{:platform :and

: code 1000
{:platform :10s
: code 2000



Extend ~common-rollout~
common-xp if required

That’s how :include—-1list, :app-version,
etc. were born



Beware of many nested
feature flags

True for backend, frontend and mobile



Don’t delete app-facing
feature flags

True for mobile



Include a feature flag on the
whiteboarding phase



Include deleting/retiring the
feature flag at the end



Avoid renaming a feature flag

Use :app-version with ::min-version 1nstead



And most importantly...



*Always™ rely on a feature
flag on the app

Never do a hotfix, avoid expedited releases
at all costs
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