


Rollout, feature flag,
experiment, operational toggle

Different use cases for backend, frontend and
mobile



"Feature flags" tend to come
up when talking about
continuous deployment



CI: continuous integration
CD: continuous delivery

CD: continuous deployment



rollout
feature flag
experiment

= w DD

operational toggle



Rollout

Short—-1lived using percentages
— a new deployment of kubernetes
— new APK released to the Play Store



Feature flag

Medium—-lived using allow list, A/B test,
percentage, app version, etc.
— :new—chargeback—-flow

— :new—debit—-card—activation—screen



Medium—-lived using allow list and A/B test
— :debit-withdrawal—-test



Operational toggle

Long—-lived using percentage
— :bank-barcode—-payment
— :savings—-bank-barcode—-query-provider



We know know about the types

But they have different
relevance for backend,
frontend and mobile



1. rollout: k8s blue/green, canary and
~common—rollout~ common—xp

2. feature flag: ~common—-rollout~ common—xp
and datasets

3. experiment: common—xp

4. operational toggle: ~common—-rollout~

common—xp



. rollout: CDN and page refreshes

feature flag: percentages and maybe IPs

1

2

(no :customer/id on the website)

3. experiment: via dynamic backend control
4

. operational toggle: via dynamic backend

control



rollout: app stores
feature flag: via dynamic backend control
experiment: via dynamic backend control

s w N

operational toggle: via dynamic backend

control



Key differentiator 1s

how much *control™ we have
over the environment






We choose when to make a new version
avallable



mobile

— app stores can restrict updates (worse

for 108S)
— customers still have to download new

versions



Costs

— more complex code
— compatibility with old app versions
— nesting 1s exponential



Benefits

— dynamicity



weighting costs A" benefits



weighting costs A" benefits

— backend: sometimes worth the cost
— frontend: almost always worth the cost
— mobile: *always* worth the cost



Best practices



dynamic content > feature flag

Always true for mobile, almost always for
frontend



Use :include-list for named
groups

Always true for backend, frontend and
mobile
{:rules
#{{:types :include-list
:content {:filename "debit-team—members.



Always use :app-version

Only for mobile

{ :rules
#{{:types :app-version
:content {:min-version #{{:platform :and

: code 1000
{:platform :10s
: code 2000



Extend ~common-rollout~
common-xp if required

That’s how :include—-1list, :app-version,
etc. were born



Beware of many nested
feature flags

True for backend, frontend and mobile



Don’t delete app-facing
feature flags

True for mobile



Include a feature flag on the
whiteboarding phase



Include deleting/retiring the
feature flag at the end



Avoid renaming a feature flag

Use :app-version with ::min-version 1nstead



And most importantly...



*Always™ rely on a feature
flag on the app

Never do a hotfix, avoid expedited releases
at all costs



References

1. "Feature Toggles (aka Feature Flags)",
by Pete Hodgson

2. "Continuous integration vs. delivery vs.
deployment", by Sten Pittet

3. Accelerate, by N. Forsgren, J. Humble
and G. Kim

4. these slides: euandre.org/slide/

5. prose version of this presentation
6. View source



