

Rollout, feature flag,
experiment, operational toggle

Different use cases for backend, frontend and

mobile

"Feature flags" tend to come
up when talking about
continuous deployment

CI: continuous integration

CD: continuous delivery

CD: continuous deployment

Types

1. rollout

2. feature flag

3. experiment

4. operational toggle

Rollout

For *rolling out* a new
version of software

Short−lived using percentages

− a new deployment of kubernetes

− new APK released to the Play Store

Feature flag

For turning a feature *on* or
off

Medium−lived using allow list, A/B test,

percentage, app version, etc.

− :new−chargeback−flow

− :new−debit−card−activation−screen

Experiment

For analysing behaviour

Medium−lived using allow list and A/B test

− :debit−withdrawal−test

Operational toggle

For disabling features in
#crash−like situations

Long−lived using percentage

− :bank−barcode−payment

− :savings−bank−barcode−query−provider

We know know about the types

But they have different
relevance for backend,

frontend and mobile

backend

1. rollout: k8s blue/green, canary and

~common−rollout~ common−xp

2. feature flag: ~common−rollout~ common−xp

and datasets

3. experiment: common−xp

4. operational toggle: ~common−rollout~

common−xp

frontend

1. rollout: CDN and page refreshes

2. feature flag: percentages and maybe IPs

(no :customer/id on the website)

3. experiment: via dynamic backend control

4. operational toggle: via dynamic backend

control

backend

1. rollout: app stores

2. feature flag: via dynamic backend control

3. experiment: via dynamic backend control

4. operational toggle: via dynamic backend

control

Key differentiator is

how much *control* we have
over the environment

backend

full control

frontend

partial control

We choose when to make a new version

available

mobile

very limited control

− app stores can restrict updates (worse

for iOS)

− customers still have to download new

versions

Costs

− more complex code

− compatibility with old app versions

− nesting is exponential

Benefits

− dynamicity

weighting costs Ã˙ benefits

The less control we have, the
more we value dynamicity

weighting costs Ã˙ benefits

− backend: sometimes worth the cost

− frontend: almost always worth the cost

− mobile: *always* worth the cost

Best practices

dynamic content > feature flag

Always true for mobile, almost always for

frontend

Use :include−list for named
groups

Always true for backend, frontend and

mobile

	{:rules

	 #{{:types :include−list

	 :content {:filename "debit−team−members.txt"}}}}

Always use :app−version

Only for mobile

	{:rules

	 #{{:types :app−version

	 :content {:min−version #{{:platform :android

	 :code 1000000}

	 {:platform :ios

	 :code 2000000}}}}}}

Extend ~common−rollout~
common−xp if required

That’s how :include−list, :app−version,

etc. were born

Beware of many nested
feature flags

True for backend, frontend and mobile

Don’t delete app−facing
feature flags

True for mobile

Include a feature flag on the
whiteboarding phase

Include deleting/retiring the
feature flag at the end

Avoid renaming a feature flag

Use :app−version with :min−version instead

And most importantly...

Always rely on a feature
flag on the app

Never do a hotfix, avoid expedited releases

at all costs

References

1. "Feature Toggles (aka Feature Flags)",

by Pete Hodgson

2. "Continuous integration vs. delivery vs.

deployment", by Sten Pittet

3. Accelerate, by N. Forsgren, J. Humble

and G. Kim

4. these slides: euandre.org/slide/

5. prose version of this presentation

6. view source

